A Multiplexing Off-Line LED Driver Achieves High Power Factor and Flicker-Free Operation

Peng Fang
Dept. of Electrical Engineering
University of Minnesota Duluth
Duluth, U.S.A
fangp@d.umn.edu

Yan-Fei, Liu, Paresh C. Sen
Dept. of Electrical and Computer Engineering
Queen’s University
Kingston, Canada
yanfei.liu@queensu.ca, senp@queensu.ca

Abstract—Although a single-stage off-line LED driver can achieve low cost and high efficiency, the notorious double-line-frequency flicker issue with a single-stage LED driver limits its usage in high-quality lighting applications. To solve lighting flicker, multiplexing operation is proposed in this paper. One switching cycle is further divided into two portions, namely phase one and phase two, which produces a main output voltage and an opposite ripple voltage. The main and the opposite ripple voltage are connected in series to form the LED voltage, which is a DC because of ripple cancellation. Therefore, a DC LED current can be produced and achieves flicker-free LED driving performance. A 7.5W experimental prototype had been built and tested to verify the design concept.

I. INTRODUCTION

Light Emitting Diode (LED) lighting has gained significant popularity in residential, commercial, automotive and many other general lighting applications. Compared to traditional lighting technologies, such as incandescent and fluorescent lighting, LED lighting is more energy saving, reliable and environmentally friendly. The global LED lighting market is expected to reach $58 billion US dollars in 2022 with a growth rate of around 13% between 2017 and 2022 [1]. Undoubtedly, LED lighting will become a dominant lighting choice in the near future.

Although LED lighting technology is promising, some challenges need to be overcome to maximize the benefit of using it. A specially designed power supply, LED driver, is required to power the LED load and regulate the current. The intrinsic low internal resistance of an LED load makes it prone to light flickering, especially when an LED load is driven by an off-line LED driver that needs to meet power factor requirements from EnergyStar [2]. This requires power factor correction (PFC) for any off-line LED drivers have higher than 5W rated power, 0.7 PF for residential and 0.9 PF for commercial usage.

Fig. 1 shows the critical line cycle waveforms when a unity power factor is implemented. The input current follows the input voltage and the AC input power waveform is sinusoidal with a DC bias at half of the peak value. To achieve flicker-free LED driving, the expected output power is equal to the average AC input power. Therefore, there is imbalanced energy between the AC input and the LED load output at double-line-frequency. The imbalanced energy further generates a ripple voltage on the output of the PFC stage at the same frequency. In a single-stage off-line LED driver, the ripple voltage is directly applied to its LED load. Because of very low internal resistance of an LED load, the ripple voltage causes an exaggerated ripple LED current, also at double-line-frequency. The ripple LED current is almost proportionally presented as lighting fluctuation - flicker. Although flicker at higher than 70Hz frequency is usually invisible, it is proven to be harmful and can lead to many uncomfortable symptoms such as: headaches, vision impairments, and even seizures [3]. A two-stage LED driver can naturally achieve flicker-free LED driving performance. The ripple voltage generated by the PFC stage is filtered by a second stage DC-DC converter. Therefore, a DC LED voltage can be generated and used to drive a LED load to achieve flicker-free performance. Because of the additional power stage, two-stage LED drivers are usually lower in efficiency and higher on component costs. Especially in low power applications (below 10W), it is undesirable to add further cost.

A variety of LED driving methods have been presented attempts to improve efficiency, reduce component cost and achieve flicker-free LED driving performance. Some methods improve the control strategy of LED drivers. For example, the harmonic input currents injection method [4]-[6] had been proposed to reduce double-line-frequency imbalanced energy existing in a single-stage LED driver. Therefore, the ripple LED current is reduced to alleviate lighting flicker. Also, the primary side current estimation methods [7]-[10] had been proposed to achieve primary side control, which reduces component costs and improves reliability. Other methods focus on improving the power stage structure of LED drivers. An example of this is the energy buffering technologies [11]-[14] which had been proposed to balance energy difference between AC input and
LED output with a bi-directional DC-DC converter. Further, the two-stage integrated methods [15]-[19] had been proposed to share components between the first PFC stage and the second DC-DC stage, which can reduce component cost.

The concept of ripple cancellation LED drivers [20]-[25] is shown in Fig. 2. A main PFC is used to transfer energy from AC input to LED output and achieve power factor correction. A separate ripple cancellation converter is used to produce an opposite double-line-frequency ripple voltage. By connecting these two voltages in series, the main ripple voltage is canceled by the opposite ripple voltage and a DC LED voltage is produced to achieve flicker-free LED driving performance. An energy channeling LED driver, which is also based on the concept of ripple cancellation, was proposed in [25]. It can achieve flicker-free operation while maintaining a low component cost. The drawbacks of this design include undesired AC input current zero-crossing distortion as well as limited input voltage range. It is difficult to optimize operation under both the high and the low line inputs with one set of design parameters.

A multiplexing energy channeling (MEC) LED driver is a new method proposed in this paper. Under this operation, the AC input current zero-crossing distortion is eliminated, and the design can work under an extensive input voltage range.

The remaining of this paper is organized as follows. Section II discusses the concept and operating principle of the MEC LED driver; Section III discusses the control strategy of the LED driver; The experimental result of the designed prototype is presented in section IV followed by the conclusion in section V.

II. OPERATING PRINCIPLES

Fig. 3 shows a Buck-Boost topology-based implementation of the proposed MEC LED driver. The same concept can be implemented with other current-fed topologies, such as Flyback, and Boost. Compared to a conventional Buck-Boost LED driver, the proposed MEC LED driver contains an additional ripple cancellation unit (RCU), which is highlighted in red dash box. The RCU is active during the phase two operation, through which an opposite ripple voltage is produced. There is an additional diode, D₅, to ensure unidirectional current flow which

![Fig. 3 Circuit implementation of the proposed multiplexing energy channeling LED driver based on Buck-Boost topology.](image)

![Fig. 2 Generic structure of ripple cancellation LED driver [20]–[25].](image)

![Fig. 4. One switching cycle operation of the proposed multiplexing energy channeling LED driver.](image)
will be explained in the later part of this section. It will also be explained that the D2, Q2 and D3 have very low voltage stresses (around 20V) and can be implemented with low voltage rating devices to maintain an overall low cost. It should be noted in Fig. 2. that the output V_{o2} is negative, which is indicated with the top plate of C_{o2} being negative and the bottom plate of C_{o2} being positive. The switching operation of the proposed LED driver is shown in Fig. 4. and the key switching waveforms are shown in Fig. 5. The detailed switching operation in each time interval will be discussed as follows.

\[
V_{o2} = \frac{V_{\text{in}_{\text{rec}}}}{L_{N1}}(t_1-t_0)
\]

(1)

In (1), L_{N1} represents the inductance of the winding N_{1}. The average current drawn from AC input during phase one operation, I_{\text{in}_{\text{avg}}}, can be expressed as:

\[
I_{\text{in}_{\text{avg}}} = \frac{I_{Q1_{-t_1}}}{2T_s} \times (t_1-t_0)
\]

(2)

Further combining (1) and (2) yields:

\[
I_{\text{in}_{\text{avg}}} = \frac{V_{\text{in}}}{2T_s \times L_{N1}} \times (t_1-t_0)^2
\]

(3)

As both the terms (t_1-t_0) and T_s are constant in a half line cycle, I_{\text{in}_{\text{avg}}} is therefore proportional to the input voltage and power factor correction is performed.

The diode D_1 is reverse biased and the voltage stress on D_1 during this time interval can be expressed as:

\[
V_{D_1[t_0-t_1]} = V_{o1} + V_{\text{in}_{\text{rec}}}
\]

(4)

The voltage across the winding N_{2} can be expressed as:

\[
V_{N2[t_0-t_1]} = V_{\text{in}_{\text{rec}}} \times \frac{N_2}{N_1}
\]

(5)

If the voltage on winding N_{2} is higher than the |V_{o1}|, the diode D_{2} is reverse biased while the body diode of Q_{2} is forward biased. Vice versa, if the voltage on winding N_{2} is lower than |V_{o1}|, the diode D_{2} is forward biased while the body diode of Q_{2} is reverse biased. Therefore, the voltage stress on D_{2} and Q_{2} can be expressed as:

\[
V_{D2[t_0-t_1]} = \max \left\{ V_{\text{in}_{\text{rec}}} \times \frac{N_2}{N_1} - |V_{o1}|, 0 \right\}
\]

(6)

\[
V_{Q2_{-t_1}} = \max \left\{ |V_{o2}| - V_{\text{in}_{\text{rec}}} \times \frac{N_2}{N_1}, 0 \right\}
\]

(7)

Since both V_{o2} and the output V_{o2} are not constant in a half line cycle, the polarity of the diode D_{2} and the body diode of Q_{2} during [t_0-t_1] change in a half line cycle. It is also shown in Fig. 5 with dotted lines that the voltage V_{D2} and V_{Q2_{-t_1}} have two possible scenarios.

B. Time Interval [t_1-t_2]

As the MOSFET Q_{1} is turned off at time t_1, the magnetic current is forced to conduct in diode D_{1}. The voltage across the winding N_{1} is clamped to be the same as the output V_{o1} (ignore the forward voltage drop of diode D_{1}). The diode D_{1} is forward biased while the voltage on the MOSFET Q_{1} is the sum of input voltage and output voltage V_{o1}, and can be expressed as:

\[
V_{Q1_{-t_1}} = V_{\text{in}_{\text{rec}}} + V_{o1}
\]

(8)

During this time interval, the energy stored in the inductor is transferred to the output V_{o1}. The magnetic current in winding N_{1} starts decreasing at time t_1 and becomes zero at time t_{2}, which ends the phase one operation. The diode D_{2} is forward biased while the body diode of Q_{2} is reverse biased during this time interval. The voltage across the drain to source terminals of Q_{2} can be expressed as:

\[
V_{Q2_{-t_1}} = V_{N2[t_1-t_2]} + |V_{o2}| = V_{o1} \times \frac{N_2}{N_1} + |V_{o2}|
\]

(9)

C. Time Interval [t_2-t_3]

The phase two operation starts at time t_{2} when the MOSFET Q_{2} is turned on and the switching current in winding N_{2} starts increasing from zero. The switching current in Q_{2} and D_{2} peaks at time t_{3} right before Q_{2} is turned off and can be expressed as:
With proper conditioning, the sensed ripple voltage becomes the reference voltage of \(V_{o2} \), \(V_{o2, \text{ref}} \). The output voltage \(V_{o2} \) is sensed and compared with its reference.

![Diagram](image)

Fig. 6 Control diagram of the proposed multiplexing energy channeling LED driver

The compensated error voltage \(V_{\text{err}} \) is compared with the same saw tooth signal to produce the gate driving signal of \(Q_2 \) during the phase two operation. With a well-designed regulation loop, the output \(V_{o2} \) will tightly follow the reference voltage and produce an opposite ripple voltage to cancel the ripple from \(V_{o1} \).

IV. EXPERIMENTAL VERIFICATION

To verify the proposed MEC LED driver, a 7.5W experimental prototype was built and tested. Table 1 shows the design specifications and the circuit parameters of the experimental prototype.

<table>
<thead>
<tr>
<th>Design Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>89Vrms – 132Vrms</td>
</tr>
<tr>
<td>(V_{\text{LED}})</td>
<td>~ 50V</td>
</tr>
<tr>
<td>(I_{\text{LED}})</td>
<td>0.15A</td>
</tr>
</tbody>
</table>
A small bump on the switching current waveform of N1 represents the current in diode D1 after Q2 is turned off. The magnetic current in winding N1 drops to zero at time t1, which ends the phase two operation.

Fig. 8 shows the key ripple cancellation waveforms of the proposed MEC LED driver. There is a 3Vpk-pk 120Hz ripple voltage generated at the output Vo1. An opposite ripple voltage is generated at the output Vo2. Because of ripple cancellation between Vo1 and Vo2, the overall LED voltage has a much smaller ripple than that of Vo1. The 120Hz ripple current is measured to be 25mA peak to peak, which means 12.5mA peak and is 8.3% of the average 150mA LED current.

Fig. 9 Critical switching waveforms show gate timing and switching currents

Fig. 9 shows the gate driving and the switching current waveforms. A switching cycle starts at time t0 when the MOSFET Q1 is turned on. The magnetic current in winding N1 (and Q1) starts rising from zero. The magnetic current peaks at t1 when Q1 is turned off and continues flowing in D1. The magnetic current drops to zero at time t3, which ends the phase one operation. The MOSFET Q2 is turned on at t2 and the magnetic current in winding N2 (and Q2/D2) starts increasing from zero. The current peaks at t3 when Q2 is turned off. The magnetic current then commutes from winding N2 to winding N1 and continues its flow in diode D1.

Fig. 10 Components voltage stresses under 110Vrms input, 50V LED voltage output

Fig. 10 shows the voltage stresses of the power components under 110Vrms input and 50V LED output. The maximum voltage stress across the drain and source of Q1 is around 205V under 110Vrms input. The voltage between the anode terminal of D2 and the source terminal of Q2, V(D2_A-Q2_S), is measured. The upper boundary of the waveform represents the voltage stresses of the body diode of Q2 as D2 is currently forward biased. Therefore, the maximum voltage across the drain to source of Q2 is around 20V. The lower boundary of the waveform represents the voltage stresses on the diode D2 since the body diode of Q2 is forward biased. The maximum voltage stress on D2 is around 18V. The voltage stresses of Q2 and D2 are quite small and low voltage rating devices can be used.

Fig. 11 shows the efficiency comparison between the proposed MEC LED driver and a conventional Buck-Boost LED driver. The efficiency of the proposed LED driver is approximately 2% below the efficiency of a conventional Buck-Boost LED driver, which is a small price to pay when achieving flicker-free LED driving and a significant reduction on storage capacitor C01.
A MRC LED driver has been proposed in this paper to achieve flicker-free LED driving performance with reduced storage capacitor and high power factor correction. The power circuit operates in a time multiplexing manner, which achieves power delivery and ripple cancellation in two different time periods of one switching cycle. Compared to previous ripple cancellation LED drivers, the new design eliminates the need of using a separate ripple cancellation converter to achieve flicker-free LED driving performance, which further reduces cost and will be preferred in low power, cost sensitive, applications. A 7.5W experimental prototype had been built and tested to verify the operation of the LED driver. The experimental prototype achieves 0.95PF, 8% of double-line-frequency ripple LED current performance while it is only 2% lower efficiency than a conventional Buck-Boost LED driver. Overall, the experimental results are very promising and highly agree with the analysis.

REFERENCES

Power Factor Single-Stage Flyback LED Driver," in IEEE Transactions on

Estimation Circuit for a Primary-Side Controlled LED Driver," IEEE
Transactions on Power Electronics, Vol.28, No.10, Oct. 2013,
pp.4811-4819

for High-Power-Factor LED Driver With TRIAC Dimming Capability,"
IEEE Transactions on Power Electronics, Vol.27, No.11, Nov.2012,
pp.4619,4629.

Free Electrolytic Capacitor-Less AC–DC LED Driver" in IEEE
Transactions on Power Electronics, Vol. 27, No. 11, pp.4540-4548,
November 2012.

[12] Y. Yang, X.B. Ruan, L. Zhang, J.X He and Z.H Ye, "Feed-Forward
Scheme for an Electrolytic Capacitor-Less AC/DC LED Driver to Reduce
29, No. 10, pp. 5508-5517, October 2014.

Capacitance Requirements for Single-Phase Inverters and Rectifiers
27, No. 11, pp. 4690-4698, November. 2012.

LED Drivers Based on Series-Input Converter Modules," in IEEE
Transactions on Power Electronics, Vol. 26, No. 10, pp.2887-2895,
October 2011.

Implementation of a Single-Stage Driver for Supplying an LED Street-
Lighting Module With Power Factor Corrections," in IEEE Transactions

Single-Switch LED Drivers Without Electrolytic Capacitors," in IEEE
Journal of Emerging and Selected Topics in Power Electronics, Vol.

Capacitor-Less AC-Input LED Driver Topology With High Frequency
Pulsating Output Current," in IEEE Transactions on Power Electronics,

[18] Z. Bo, Y. Xu, X. Ming, Q.L. Chen and Z.A. Wang, "Design of Boost-
Flyback Single-Stage PFC converter for LED power supply without
electrolytic capacitor for energy-storage," in International Power
Electronics and Motion Control Conference, Wuhan, 2009.

[19] K. M. Divya and K. Parackal, "High power factor integrated buck-boost
flyback converter driving multiple outputs," in Online International
Conference on Green Engineering and Technologies, Coimbatore, 2015

and T.Marchesan, "Capacitance reduction with an optimized converter
connection applied to LED drivers," in IEEE Transactions on Industrial

Garcia, "Offline LED Driver for Street Lighting With an Optimized
Cascade Structure," in IEEE Transactions on Industry Applications,

[22] P. Fang, Y. j. Qiu, H. Wang and Y. F. Liu, "A Single-Stage Primary-Side-
Controlled Off-line Flyback LED Driver with Ripple Cancellation," in
IEEE Transactions on Power Electronics, Vol. 32, no. 6, pp. 4700-4715,
June 2017.

Cancellation Method to Achieve Single-Stage Electrolytic-Capacitor-
Less High-Power LED Driver," in IEEE Journal of Emerging and
2015.

LED Driver With High Power Factor," in IEEE Journal of Emerging and
2015.

Achieve Flicker-Free Operation with True Single Stage Power Factor
Correction," in IEEE Transactions on Power Electronics, vol. 32, no. 5,

[27] W. Chen and S.Y.R. Hui, "Elimination of an Electrolytic Capacitor
in AC/DC Light Emitting Diode (LED) Driver With High Input Power
Factor and Constant Output Current," in IEEE Transactions on Power

[28] H. Ma, J. S. Lai, Q. Feng, W. Yu, C. Zheng and Z. Zhao, "A Novel Valley-
Fill SEPIC-Derived Power Supply Without Electrolytic Capacitor for
LED Lighting Application," in IEEE Transactions on Power Electronics,
Vol. 27, No. 6, pp. 3057-3071, June 2012.

electrolytic capacitor less non-inverting buck-boost PFC based AC–DC
ripple free LED driver," in IET Power Electronics, vol. 10, no. 1, pp. 38-
46, 2017.

AC/DC LED Driver With Current-Controlled Variable PFC Boost
Inductor," in IEEE Transactions on Power Electronics, Vol. 27, No. 3,

[31] Y.C. Li and C.L Chen, "A Novel Single-Stage High-Power-Factor AC-
to-DC LED Driving Circuit With Leakage Inductance Energy Recycling,
" in IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, pp.793-
802, February 2012.

Wide Dimming Range," in IEEE Transactions on Power Electronics,

1154