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Abstract

A new algorithm, Multiple Multistage Hypothesis Test Tracking (MMHTT), is pre-

sented as a solution to an important class of multidimensional signal detection and

estimation problems: the detection and tracking of multiple, low observable, moving

point-source targets of unknown position and velocity, in a sequence of digital images.

The MMHTT algorithm is a `track-oriented' multiple hypothesis tracking (MHT) al-

gorithm which exploits a new implementation of the recent multidimensional sequen-

tial detection algorithm, Multistage Hypothesis Testing (MSHT) to achieve joint

target detection and tracking. The MMHTT algorithm is a maximum likelihood,

multiple hypothesis, `track-before-detect' algorithm which exploits the properties of

sequential hypothesis testing to e�ciently prune an exhaustive tree-structured search

of candidate target trajectories. Detected trajectory segments are e�ciently clustered

in a localized track hypothesis data structure managed by a multiple hypothesis track-

ing scheme. Detection and tracking performance bounds for both the MMHTT and

MSHT algorithms are derived and an implementation of the MMHTT algorithm is

described including a new implementation of the MSHT algorithm. Finally, a system

is presented for preprocessing video image sequences prior to applying the algorithm

to the detection and tracking of object feature points in video image sequences.

ii



Acknowledgements

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 The Target Tracking Problem : : : : : : : : : : : : : : : : : : : : : : 5

1.3 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

1.4 Thesis Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2 Small Target Detection and Tracking 12

2.1 The Point-Source Target Model : : : : : : : : : : : : : : : : : : : : : 13

2.2 Multidimensional Signal Detection : : : : : : : : : : : : : : : : : : : 16

2.2.1 Point-Source Target Detection : : : : : : : : : : : : : : : : : : 19

2.2.2 Background Clutter Suppression : : : : : : : : : : : : : : : : : 22

2.2.3 Detect-Before-Track Algorithms : : : : : : : : : : : : : : : : : 26

2.2.4 Frequency Domain Algorithms : : : : : : : : : : : : : : : : : : 29

2.2.5 Track-Before-Detect Algorithms : : : : : : : : : : : : : : : : : 30

2.2.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.3 Multitarget Tracking and Data Association : : : : : : : : : : : : : : : 40

2.3.1 Target State Estimation and Prediction : : : : : : : : : : : : : 41

2.3.2 Data Association : : : : : : : : : : : : : : : : : : : : : : : : : 42

iv



2.3.3 Track Life Stages: Initiation, Con�rmation, Deletion : : : : : 47

2.3.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3 Multiple Hypothesis Sequential Detection and Tracking 49

3.1 Target Detection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

3.1.1 Forming candidate trajectories : : : : : : : : : : : : : : : : : : 51

3.1.2 Track Con�rmation : : : : : : : : : : : : : : : : : : : : : : : : 57

3.1.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

3.2 Target Tracking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

3.2.1 The Detected Target Observations : : : : : : : : : : : : : : : 63

3.2.2 Multiple Hypothesis Tracking : : : : : : : : : : : : : : : : : : 65

3.2.3 Track Hypotheses : : : : : : : : : : : : : : : : : : : : : : : : : 67

3.2.4 Global Hypotheses : : : : : : : : : : : : : : : : : : : : : : : : 70

3.2.5 Hypothesis Generation : : : : : : : : : : : : : : : : : : : : : : 73

3.3 Computational Re�nements : : : : : : : : : : : : : : : : : : : : : : : 87

3.3.1 Track Initiation : : : : : : : : : : : : : : : : : : : : : : : : : : 88

3.3.2 Pruning and Combining Hypotheses : : : : : : : : : : : : : : : 93

3.4 Implementation Notes : : : : : : : : : : : : : : : : : : : : : : : : : : 103

3.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

4 Performance Analysis 108

4.1 Single Candidate Trajectory Performance : : : : : : : : : : : : : : : : 109

4.2 Performance for a Candidate Trajectory Tree : : : : : : : : : : : : : : 112

4.2.1 Comments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

4.3 Overall Detection and Tracking Performance : : : : : : : : : : : : : : 121

4.3.1 Average Time to Track Loss : : : : : : : : : : : : : : : : : : : 121

4.3.2 Performance of Repeated Candidate Trajectory Trees : : : : : 124

4.3.3 A Sample Tracking Performance Analysis : : : : : : : : : : : : 127

4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129

5 Feature Detection and Tracking 130

5.1 Previous Work in Feature Correspondence : : : : : : : : : : : : : : : 131

5.2 The Feature Point Correspondence Problem : : : : : : : : : : : : : : 132

v



5.3 Image Preprocessing : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

5.3.1 Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

5.3.2 Change Detection : : : : : : : : : : : : : : : : : : : : : : : : : 138

5.4 Feature Detection and Tracking Experiments : : : : : : : : : : : : : : 139

5.4.1 Synthetic Image Sequence : : : : : : : : : : : : : : : : : : : : 141

5.4.2 Real Image Sequences : : : : : : : : : : : : : : : : : : : : : : 143

5.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

6 Summary 147

6.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

Symbols and Abbreviations 151

Bibliography 157

Vita 169

vi



List of Tables

3.1 Frame by Frame Target Positions for Tracking Example : : : : : : : : 77

3.2 Detected Trajectory Segments for Tracking Example 1 : : : : : : : : 78

3.3 Track Hypotheses after Frame 4 : : : : : : : : : : : : : : : : : : : : : 79

3.4 Tracking Hypotheses before Cluster Merge in Frame 6. : : : : : : : : 81

3.5 Track Hypotheses after Cluster Merge in Frame 6 (� and after Frame 6). 82

3.6 Global Track Hypotheses after Frame 6 : : : : : : : : : : : : : : : : : 84

3.7 Track Hypotheses after Frame 7 : : : : : : : : : : : : : : : : : : : : : 85

3.8 Global Track Hypotheses after Frame 7 : : : : : : : : : : : : : : : : : 86

3.9 Track Hypothesis Scores after Frame 6 : : : : : : : : : : : : : : : : : 96

3.10 Global Hypothesis Scores after Frame 6 : : : : : : : : : : : : : : : : : 97

3.11 Track Hypotheses after Frame 7 : : : : : : : : : : : : : : : : : : : : : 99

3.12 Global Track Hypotheses after Frame 7 : : : : : : : : : : : : : : : : : 99

3.13 Track Hypotheses after Frame 8 : : : : : : : : : : : : : : : : : : : : : 100

3.14 Global Track Hypotheses after Frame 8 : : : : : : : : : : : : : : : : : 100

3.15 Track Hypotheses after Frame 10 : : : : : : : : : : : : : : : : : : : : 101

3.16 Global Track Hypotheses after Frame 10 : : : : : : : : : : : : : : : : 102

3.17 Global Track Hypotheses after Cluster Split : : : : : : : : : : : : : : 103

4.1 Candidate Trajectories for a 3-Stage Tree : : : : : : : : : : : : : : : : 114

4.2 Performance Tree Analysis Nodes (K = 3) : : : : : : : : : : : : : : : 116

4.3 Candidate Trajectory Mapping to Single Track Performance Analyses 117

4.4 Mixed-Model Performance Analysis (K = 3) : : : : : : : : : : : : : : 117

4.5 Example Mixed-Model Performance Analysis : : : : : : : : : : : : : : 119

4.6 Candidate Trajectory Mapping to Single Track Performance Analyses 119

4.7 Decision Probabilities for Sample Candidate Trajectory Test Set : : : 120

vii



List of Figures

1.1 The Three-Dimensional Image Sequence Volume : : : : : : : : : : : : 5

1.2 Basic System Structure for Detecting and Tracking Small Targets : : 6

2.1 Tree-Structured Trajectory Search : : : : : : : : : : : : : : : : : : : : 36

3.1 Target Velocity Annulus : : : : : : : : : : : : : : : : : : : : : : : : : 53

3.2 Tree-Structured Trajectory Search : : : : : : : : : : : : : : : : : : : : 56

3.3 The Undecided Trajectory Data Structure : : : : : : : : : : : : : : : 60

3.4 Example Target Trajectories : : : : : : : : : : : : : : : : : : : : : : : 77

4.1 A 3-Stage Candidate Trajectory Tree. : : : : : : : : : : : : : : : : : : 113

4.2 Performance Analysis Tree (K = 3) : : : : : : : : : : : : : : : : : : : 115

4.3 The Probability of Following a Target : : : : : : : : : : : : : : : : : : 128

5.1 Automated Feature Detection and Tracking System : : : : : : : : : : 132

viii



Chapter 1

Introduction

In recent years, there has been a growing interest in real-time image sequence analysis

[1{4]. Recent advances in digital signal processing hardware and algorithms, and

dramatic increases in the volume of image data being processed, are driving rapid

growth in this �eld. Developing applications of this technology range from robotic

vision systems to the automated analysis of dynamic imagery generated by spaceborne

and airborne surveillance sensors.

Digital image sequence analysis is the �eld of study encompassing the techniques

and algorithms for extracting dynamic information from sequences of digital images.

Usually the goal of the analysis is to extract information from the image sequence

which could not have been obtained from the static analysis of each individual image

in the sequence. Each image in the sequence is the result of sampling and quantizing

the output of an electro-optical sensor, such as a video or infrared CCD (charge-

coupled device) array or imaging radar. In general, the sensor may be either �xed

or moving with respect to the imaged scene, but appropriate processing can often

compensate for the e�ects of sensor motion.

Advances in electro-optical sensor technology have enabled the development of

wide-�eld-of-view surveillance applications with a concomitant interest in the devel-

opment of algorithms to detect and track small, low observable targets in remotely

sensed imagery. However, the successful development of these algorithms is depen-

dent on the solution of fundamental problems in multidimensional signal detection

and estimation. Although the detection and tracking of low observable targets has
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been an active area of research in the radar and sonar communities for nearly thirty

years [5{20], the detection and tracking of low observable targets in optical images

has been the subject of intense investigation for little more than a decade [21{43].

The use of high speed digital signal processors and higher quality optics has greatly

a�ected the design and implementation of these applications. Increasingly demanding

system requirements and a steady decrease in the cost of high performance processors,

have made highly sensitive but computationally intensive algorithms more attractive

for real-time applications. Current research and algorithm development is focused

on improving detection and tracking performance and e�ciency, particularly for low

observable targets in moderate to dense target environments.

The problem of low observable point-source target detection and tracking arises

in remote surveillance applications where the targets are su�ciently distant from the

sensor that their focal plane image is determined by the sensor's optical point-spread

function (psf) (� 1�20 pixels) and the target signal amplitude is weak relative to the

background clutter and noise recorded by the image sensor. The small spatial extent

of these targets precludes the use of many traditional image processing techniques

which exploit information about a target's size, shape and features [44{46]. In fact,

the problems associated with small targets were considered of su�cient interest that

the Society of Photo-Optical Instrumentation Engineers (SPIE) recently inaugurated

an annual conference on the Signal and Data Processing of Small Targets [47{49].

SPIE de�nes small targets as having a total spatial extent of less than 80 pixels

(9x9) which is less than .15% of a 256x256 pixel image. This classi�cation includes

� point-source targets

� small extended objects, and

� clusters of point-source targets and small extended objects [48].

1.1 Applications

The following applications are representative of the environments in which small

target detection and tracking plays a critical role:
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Wide-Field-of-View Telescopes

Recently, there has been signi�cant interest in the development of Wide-Field-of-View

Telescopes to locate, track and catalog the increasing number of arti�cial satellites

orbiting the Earth [22, 29, 33, 40, 42, 50, 51]. An array of CCD detectors on the

focal surface of the telescope, integrates the photon charges received during a frame

sampling period to construct a digital image of the telescope's �eld-of-view (FOV).

Typically, long exposure times are used to detect faint objects but this technique

is only e�ective for stationary objects. The system frame rate for moving objects

requires that each image be constructed from a relatively small number of photons.

Consequently, the resultant imagery is dominated by random sensor noise. The prob-

lem, in this case, is to detect and track meteors, arti�cial satellites and other small,

luminous targets in the resulting digital telescope image sequences of the night sky.

Due to the immense distances involved, the targets can be approximated as point-

source targets in the telescope imagery.

Infrared Search and Track Systems

It is becoming common for passive electro-optical (EO) sensors to be included in the

design of airborne and terrestrial military platforms. Passive EO sensors are valued

for their lack of sensor emissions, electronic countermeasures (ECM) immunity, and

their ability to provide improved recognition and veri�cation through the presentation

of recognizable images [52]. Infrared sensors have the additional advantages of night

operability and improved haze penetration.

Infrared Search and Track (IRST) systems are wide-�eld-of-view surveillance sys-

tems designed for autonomous target detection and track acquisition [53]. An IRST

system typically uses a Forward Looking Infra Red (FLIR) sensor to detect moving

air and ground targets. Since maximum range detection is critical, IRST systems are

essentially point-source detectors. The targets are typically buried in highly struc-

tured background clutter and have a very low signal-to-noise-ratio. Detection is often

hampered by sensor and background motion which degrades the performance of clut-

ter and noise suppression �lters, and by the absence of a priori target and background

signature information.
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Space-Based Surveillance and Tracking Systems

There has been considerable interest over the last decade in developing Space Based

Surveillance and Tracking Systems (SSTS) to simultaneously detect and track a large

number of fast-moving targets, such as airplanes or missiles, over a wide-�eld-of-

view. A satellite-borne staring or scanning mosaic sensor staring at a �xed point on

the ground can be designed to detect and track a particular class of targets [26, 54].

Maximizing the achievable performance under computational resource constraints is

of major concern for aerospace surveillance applications as considerations of on-board

processor size, weight and power consumption restrict the computational complexity

of systems designed for autonomous aerospace-borne sensors.

Video Tracking

Real-time video tracking is of considerable interest in automating the analysis of �lm

and video. Video analysis is used in applications ranging from videotheodolites for

motion analysis of military test range imagery [46], to commercial systems to analyze

a golf swing or baseball pitch. Video image sequences typically contain highly struc-

tured, non-stationary background clutter with a good signal-to-noise ratio. However,

video tracking algorithms must be able to e�ectively cope with a rapidly time-varying

background, target occlusion and/or sudden changes in local or global illumination.

Three-Dimensional Rigid-Body Motion Estimation

Researchers in computational vision have been studying the problem of estimating

three-dimensional motion from a sequence of images, intensively [1, 3, 4, 55]. Al-

though the objects of interest are typically quite large (greater than 80 pixels), there

is an extensive body of research in three-dimensional rigid-body motion estimation

[55{58] which assumes the prior existence of a set of feature point correspondences.

These algorithms can compute the three-dimensional motion of a rigid-body given

the location of known feature points in each image of a sequence. The detection and

tracking of these feature points is suitable for consideration within the small target

detection and tracking framework [59, 60].
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1.2 The Target Tracking Problem

The basic problem inherent to the previous applications is the detection of small, low

observable, moving targets in a sequence of digital images and subsequent estimation

of the target trajectories. Hereinafter, this problem will be referred to as the Mul-

tiframe Target Detection and Tracking (MFTDT) problem. In each case, an image

sensor produces an image sequence which may contain one or more moving targets.

Each image in the sequence is a function of the observed scene, the sensor optics, and

the system hardware.

Figure 1.1: The Three-Dimensional Image Sequence Volume

The analog signal received by the sensor hardware is sampled in both space and

time, and quantized to a discrete set of image pixel intensities. The resulting digital

image sequence is a triply indexed, discrete volume of digital image intensity data

I[x; y; t] (see �gure 1.1), where x � [x; y] are the spatial coordinates of discrete image

pixel locations and t is the temporal frame index. In general, I[x; t] may be multi-

valued representing, for example, the received intensity in di�erent spectral bands of

a multispectral sensor.

When a low observable point-source target is present in the sensor's �eld-of-view,

the resulting image sequence will be a function of both the background scene and

the target. The problem is to detect the target and track its trajectory through the

image volume. The di�culties of this task are quite clear. The small spatial extent of

the target limits the information content of the target signature precluding the use of

traditional pattern matching approaches, and the signal-to-noise ratio is su�ciently

low that detection speci�cations cannot be met by an analysis of a single image frame.
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This suggests that the target signal energy should be integrated along its tra-

jectory. However, the position and velocity of the target are initially unknown and

the target may follow an arbitrary trajectory. In many applications, multiple targets

are present in the same sequence and the image sequence may be contaminated by

non-stationary background clutter and varying amounts of random noise.

Traditionally, detection and tracking have been treated as two separate problems.

The standard approach has been to �lter the sensor data, in an attempt to suppress

the background clutter and noise, and then to detect targets by applying a �xed or

adaptive threshold to each image. With this approach, every image pixel which ex-

ceeds the detection threshold is declared a target observation. The tracking algorithm

then attempts to associate detection observations with target tracks governed by a

state-space model of target kinematics and observations.

Figure 1.2: Basic System Structure for Detecting and Tracking Small Targets

The basic algorithmic structure for the detection and tracking of small targets

is outlined in �gure 1.2. A distinction is made between signal processing functions

which operate on image data and data processing functions which operate on higher-

level data abstractions such as target state estimates and data association hypotheses.

Typically, the signal processing functions must rapidly process large volumes of image

data, making accurate, reliable detection decisions while the data processing functions

partition the detected target observations into target tracks, estimate target state

parameters and predict future target behaviour.
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There are three major functional groups to this processing structure:

1. image preprocessing, including

(a) corrections for known sensor distortions,

(b) image registration to correct spatial alignment di�erences between images,

(c) and clutter suppression �lters to enhance the signal-to-noise ratio.

2. signal detection and estimation, including

(a) target detection,

(b) and estimation of target position, velocity and signal strength

3. and multitarget tracking, including.

(a) state estimation,

(b) data association,

(c) and the generation and evaluation of target track hypotheses.

There is an apparent ambiguity in the division of the signal and data processing

functions in �gure 1.2. This grey area between functional blocks is due to the merg-

ing of target detection and tracking functions in emerging multiframe `track-before-

detect' algorithms. Classically, target detection algorithms produced hard (target

present/target absent) detection observations for each frame and then the tracking al-

gorithm made observation-to-track association decisions. These `detect-before-track'

algorithms can be computationally simple, but they only exhibit reasonable perfor-

mance when the signal-to-noise ratio is high.

It is increasingly recognized that in order to provide a detection and tracking ca-

pability for small targets under more adverse conditions, processing procedures must

make optimal use of all the available information at every processing stage. This im-

plies that hard detection decisions should be avoided or delayed. Recently, an interest

in improving detection performance for low observables has led to the development of

so called `track-before-detect' algorithms which make tentative data association deci-

sions over several image frames prior to target detection. These detection algorithms
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achieve enhanced detection performance by incorporating low level data association

functions in the detection process. The detection/tracking problem is then one of op-

timally processing the data so as to meet detection and tracking speci�cations while

maintaining a practical computational load.

The major problem confronting system designers, when selecting an appropriate

multitarget tracking (MTT) algorithm for a given target environment, is the trade-o�

between the tracking performance achieved and the computational resources (proces-

sor instructions/sec, data memory, etc.) required for its implementation. In aerospace

applications, where size, weight and power consumption are critical attributes, the

computational resources available to an MTT application are �rmly constrained.

Thus, the computational resources required to meet the minimum system require-

ments for target detection and tracking, and the maximum achievable performance

given the available computational resources, are issues requiring careful consideration.

Consequently, the primary measure of performance for a given algorithm, is its

computational e�ciency in achieving a given level of performance. Accurate predic-

tions of an algorithm's performance for realistic target environments usually involve

complex models of the target environment and extensive simulations. However, sim-

pler models can be used to analyze the relative performance trade-o�s involved in

allocating scarce computational resources.

In the following, we address the detection and tracking problems jointly. Our

approach is to combine the concepts of `track-before-detect' [22, 25, 26, 32, 33, 43],

sequential detection [40] and multiple hypothesis tracking [7, 35]. This research can be

viewed as an extension of recent developments in image processing [22, 25, 33, 39, 40],

target tracking [26, 28, 35] and computer vision [59, 60]. The new algorithm combines

the strengths of sequential signal detection and Bayesian multiple hypothesis tracking.

The basic objectives of this research were to determine the feasibility of this approach,

and to provide explicit means for analyzing the detection and tracking performance.
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1.3 Overview

This document will describe the design and development of the Multiple Multistage

Hypothesis Test Tracking algorithm and its application to the establishment of feature

point correspondences. Chapter 2 discusses relevant prior research in target detection

and tracking and introduces a point-source target model for image sequences. The

MMHTT algorithm is developed in Chapter 3 and is illustrated with a simple example

of two intersecting target trajectories. Chapter 4 outlines techniques for evaluating the

algorithm's detection and tracking performance for arbitrary known target scenarios.

Finally, in Chapter 5, a system for automating the establishment of feature point

correspondences, for the estimation of three-dimensional structure and motion, is

presented as an application of the MMHTT algorithm.

1.4 Thesis Contributions

The main contributions of this thesis are:

1. A new implementation of the Multi-Stage Hypothesis Test algorithm.

The key di�erence between the implementation of the MSHT algorithm in [40] and

the new implementation presented herein is the method of managing candidate target

trajectories which have been neither con�rmed nor rejected. In [40], these trajectories

were stored relative to the pixel in which they originated. In the new implementation,

these trajectories are stored relative to their location in the most recent image (see

section 3.1). Thus, there is a list of current candidate trajectories associated with

each image pixel location.

This local indexing of the undecided trajectories has two important consequences.

First, it enables an evaluation of the current candidate trajectories at a pixel to in-


uence the initiation of a search for new targets originating in that pixel. In [40],

a search for new targets was initiated for every pixel in every image frame. In sec-

tion 3.3.1, a decision feedback process is introduced which suppresses the initiation of

a new target search where the current pixel is more likely to contain an observation

of a previously detected target than an observation of a new target. The result is
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an improvement in the computational e�ciency of the MSHT algorithm. The second

consequence of the local indexing of undecided trajectories is an ability to incorporate

the MSHT algorithm in a multiple hypothesis tracking scheme.

2. A sequential algorithm for joint target detection and tracking.

Multiple hypothesis tracking (MHT) [7] is a term which refers to a class of data asso-

ciation algorithms that are noted both for their excellent error performance and for

their formidable computational requirements. MHT algorithms generate an exhaus-

tive set of data association hypotheses to describe the detected target observations.

These algorithms can be characterized by two main elements: 1) a method for man-

aging the multiplicity of generated hypotheses and 2) a ranking metric to evaluate

competing hypotheses.

The MSHT algorithm is an e�cient sequential detection algorithm which detects

short, linear segments of a target's trajectory but does not have an explicit mechanism

to extend the detected trajectory segments. It is shown in section 3.2.1, that the

likelihood-ratio test statistic used by the MSHT algorithm can be used as a ranking

metric for track hypotheses. In sections 3.2.3{3.2.5, this statistic is used to develop

a new multiple hypothesis tracking algorithm, Multiple Multistage Hypothesis Test

Tracking (MMHTT), which employs repeated MSHTs for combined target detection

and tracking.

The development of this new, `track-oriented' MHT algorithm follows the devel-

opment of the Structured-Branching MHT (SB-MHT) algorithm in [35]. Although

both algorithms employ a sequential probability ratio test in their evaluation of com-

peting track hypotheses, the two algorithms are distinct. The SB-MHT algorithm

employs a likelihood function derived from a state space model of the expected tar-

get dynamics while the MMHTT algorithm uni�es the target detection and tracking

problems with a likelihood function derived from a model of the sensor signal in the

presence/absence of a target. The result is a new sequential algorithm for joint target

detection and tracking which combines the detection performance and e�ciency of

the MSHT algorithm with the well-documented tracking performance of a multiple

hypothesis tracking approach [5, 7, 35].
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3. An analysis of the performance of the MSHT and MMHTT algorithms.

An ability to predict and analyze the performance of a multitarget tracking algorithm

is invaluable when designing a MTT system. The performance analysis of the MSHT

algorithm in [40] was restricted to an analysis of single candidate trajectories with

independent and identically distributed observations. This analysis has been gener-

alized, in section 4.1, to evaluate the performance of multistage hypothesis tests with

independent but non-identically distributed observations. In addition, the analysis

of the MSHT algorithm has been extended, in sections 4.2 and 4.3, to include an

analysis of the probability of false alarm and the probability of missed detection for

full candidate trajectory sets and for the repeated MSHT which characterizes the

MMHTT algorithm. The tracking performance of the MMHTT algorithm has also

been analyzed and explicit procedures for estimating the average time to track loss

has been derived in section 4.3.1.

4. An application of the MMHTT algorithm to feature detection and

tracking in video image sequences.

The establishment of feature point correspondences over an extended number of im-

age frames is a critical requirement of many algorithms for the estimation of three-

dimensional structure and motion. Feature detection and correspondence were ad-

dressed in [60] by applying the MSHT algorithm to detect image features along

short, linear trajectories through several images. Although this multiframe detection

approach o�ered increased robustness to feature detection problems and provided

implicit local correspondence decisions, it failed to extend the detected feature tra-

jectories. Consequently, a heuristic feature path linking algorithm was proposed to

produce the long trajectories required for multiframe estimation of structure and mo-

tion. In Chapter 5, the MMHTT algorithm is proposed as an alternative solution to

feature detection and tracking which obviates the need for the heuristic path linking

step.
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Chapter 2

Small Target Detection and Tracking

This chapter outlines the major existing approaches to the detection and tracking

of small, moving targets in digital image sequences. In the following, algorithms for

the signal and data processing of small targets will be discussed in terms of their

underlying assumptions about the image sequence data and their ability to make

optimal use of the available information. Each algorithm �nds application under a

suitable set of conditions but selection of the most appropriate algorithm for a given

problem is a non-trivial task. Ideally, algorithms should be compared on their ability

to e�cientlymeet system detection and tracking performance requirements. However,

it is often di�cult to compare the expected performance of two candidate algorithms

without performing extensive simulations.

The chapter begins with the development of an image signal model for point-

source targets, a review of signal detection and a discussion of multidimensional

signal detection algorithms, including single and multiframe approaches. Then the

fundamental concepts of multitarget tracking are reviewed and the major existing

approaches described. The convergence of signal and data processing algorithms in

emerging `track-before-detect' techniques is presented as a response to increasingly

demanding system performance requirements culminating in the recent development

of Bayesian Multiple Hypothesis Techniques for joint target detection and tracking.

The chapter concludes with a discussion of the relationship between the MFTDT

problem and the feature correspondence problem in computer vision.
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2.1 The Point-Source Target Model

In this section, a signal model will be developed for the discrete image data I[x; y; t]

in the MFTDT problem. As discussed in Chapter 1, the point-source target detection

problem arises in remote surveillance applications where the targets are su�ciently

distant from the sensor that their focal plane image is determined by the sensor's

optical point-spread function. With typical electro-optical image sensors, the target's

focal plane image is detected by an array of photodetectors on the sensor's focal plane.

In most remote imaging applications, the background illumination is incoherent

and the optical image I

i

(x; y; t) incident on the detector array can be expressed as

the spatial convolution of the sensor's optical point-spread function p(x; y) with the

apparent radiance of the imaged scene I

r

(x; y; t) [61, 30].

I

i

(x; y; t) = I

r

(x; y; t) � p(x; y) (2:1)

Although the point-spread function may be spatially-varying in general, it will be

assumed in the following that p(x; y) is space invariant.

The apparent scene radiance I

r

(x; y; t) is a combination of the optical energy

radiating from the image background and any targets which may be present. If the

targets are transparent to the background illumination or su�ciently small relative

to the resolution of the image sensor, then they may be considered additive to the

background scene I

b

(x; y; t) and the apparent scene radiance can be modelled as

I

r

(x; y; t) = I

b

(x; y; t) +A(t) �(x� x

t

(t); y � y

t

(t)) (2:2)

where each moving point-source target is modelled as a spatial impulse function

A(t) �(x� x

t

(t); y � y

t

(t)) (2:3)

with position (x

t

(t); y

t

(t)) and signal amplitude A(t) at time t. If the target obscures

the background intensity, then the apparent scene radiance can be expressed as

I

r

(x; y; t) = I

b

(x; y; t) + (A(t)� 
I

b

(x; y; t)) �(x� x

t

(t); y � y

t

(t)) (2:4)

where 
 expresses the percentage of the background intensity occluded by the target.
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The discrete image data I[x; y; t] is obtained by sampling and quantizing the

optical radiation incident on the sensor focal plane. A general model for this image

formation process is

I[x; y; t] = q(d(I

i

(x; y; t)) + n

SN

(d(I

i

(x; y; t))) + n

WB

(x; y)) (2:5)

where

� q() is the sensor quantization function,

� d() is the photodetector response function,

� n

SN

() is a signal dependent shot noise process (Poisson pdf), and

� n

WB

() is a signal independent wide-band noise process (Gaussian pdf).

For notational convenience, q() will be omitted in the following, but its presence will

be implied.

In general, the detector response is nonlinear, but if the detector is operating in

its linear region (2.5) can be approximated by

I[x; y; t] = I

i

(x; y; t) � d(x; y; t) + �

I

i

n

SN

(x; y) + n

WB

(x; y) (2:6)

where �

I

i

is the average intensity on the sensor focal plane. For example, a reasonable

model for the image data produced by an ideal staring mosaic array of CCD detectors

is

I[x

j

; y

k

; t

l

] = R

p

V

Z

l�t

(l�1)�t

Z

k�y

(k�1)�y

Z

j�x

(j�1)�x

I

i

(x; y; t) dx dy dt+N [j; k; l] (2:7)

whereR

p

V

is the responsivity of the detector (V q

�1

sec

�1

cm

�2

), N [j; k; l] is the detec-

tor noise process, and it is assumed that the detector pixels are spatially contiguous

rectangles with dimensions �x by �y and integration period (exposure) �t [62, 33].

In the following, it will be assumed, without loss of generality, that the detector ele-

ments are spatially contiguous rectangles with uniform response and that the sensor

image data can be modelled as in (2.7).
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Substituting (2.4) into (2.1) and then into (2.7) yields the following expression for

the image pixel data

I[x

j

; y

k

; t

l

] =

R
RR

I

b

(x; y; t) � p(x; y)� 
I

b

(x

t

(t); y

t

(t))p(x� x

t

(t); y � y

t

(t))dx dy dt

+

RRR

A(t) p(x� x

t

(t); y � y

t

(t))dx dy dt

+N [j; k; l]

(2:8)

where 
 = 0 when the target is additive to the image background, and 
 = 1 when

the target completely occludes the image background. Thus the distribution of op-

tical intensity on the surface of the photodetector can be modelled as two separate

components, a background clutter component and a target component.

For an ideal imaging system (p(x; y) = �(x; y)) with a uniform detector response

and an in�nitessimal exposure, the target impulse response is preserved and a point-

source target is imaged as a point on the sensor focal plane. Consequently, the

target photons are focused on a single detector pixel and the target signal contributes

to exactly one pixel in the resulting image frame. Thus, the detector response is

independent of the target's subpixel location on the detector surface.

However, any imaging system has a �nite spatial resolution and the target photons

may be distributed across several detector pixels depending on the sensor's point-

spread function and the target's motion. Given the target trajectory in continuous-

valued focal plane coordinates, the relative target intensity received by each pixel can

be modelled as a fraction of the total target photons received by the sensor array

during a single integration period [33].

w

j;k;l

(x

t

(t); y

t

(t)) =

R

l�t

(l�1)�t

R

k�y

(k�1)�y

R

j�x

(j�1)�x

p(x� x

t

(t); y � y

t

(t)) dx dy dt

R

k�t

(k�1)�t

R

1

�1

R

1

�1

p(x� x

t

(t); y � y

t

(t)) dx dy dt

(2:9)

If the total target intensity incident on the focal plane during a single frame exposure

is de�ned as

A =

Z

k�t

(k�1)�t

Z

1

�1

Z

1

�1

p(x� x

t

(t); y � y

t

(t)) dx dy dt (2:10)

then the image of a point-source target with focal plane coordinates (x

t

(t); y

t

(t)) can

be expressed as Aw

j;k;l

(x

t

(t); y

t

(t)).

For sensors with uniform detectors and space-invariant point-spread functions,

the target image can be expressed as a function of the target's subpixel focal plane
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coordinates relative to the nearest sampling point of the detector array (x

s

; y

s

).

t = Aw

j;k;l

(x

t

(t)� x

s

; y

t

(t)� y

s

)

x

s

�

�x

2

� x

t

(t) � x

s

+

�x

2

;

y

s

�

�y

2

� y

t

(t) � y

s

+

�y

2

;

(l � 1)�t � t � l�t

(2:11)

In principle, w

j;k;l

(x

t

(t)�x

s

; y

t

(t)�y

s

) is a continuous function of (x

t

(t)�x

s

; y

t

(t)�y

s

).

In the following, it will be assumed that

1. the imaging system can be modelled as a space-invariant linear system,

2. the target intensity can be modelled as additive to the background clutter,

3. the target intensity is constant,

4. the target trajectory can be approximated by a linear, constant velocity trajec-

tory over a short time interval, and

5. the detector response is uniform and can be modelled as in (2.7).

2.2 Multidimensional Signal Detection

In this section, basic signal detection concepts will be discussed and applied to the

MFTDT problem. The image model developed in section 2.1 will be used to de-

�ne a binary hypothesis test for the presence or absence of a point-source target.

This model will then be used as a reference to discuss previous approaches to target

detection for the MFTDT problem. The simple problem of detecting an ideally im-

aged, constant intensity point-source target in an additive independent, identically

distributed Gaussian noise background will be developed as an illustration of the

various approaches.

It is generally accepted that the image formation process is fundamentally a sta-

tistical phenomenon [61]. The random 
uctuations in detected energy are a function

of discrete quantum interactions between light and matter which cannot in principle

be perfectly predicted. This uncertainty leads to the development of probabilistic
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models for the received signal observations and places signal detection in the general

framework of statistical inference [63, 64, 65].

The goal of target detection is to decide, based on a set of received signal obser-

vations y, whether a target is present in the image sequence. The target detection

problem can be viewed as a binary hypothesis testing problem with hypotheses

� H

1

: Target Present and

� H

0

: Target Absent.

Given a set of received observations y � fy

1

; : : : y

n

g, which can be modelled as re-

alizations of random variables Y � fY

1

; : : : Y

n

g with joint probability distribution

function (pdf) f

Y

(y j �) these hypotheses can be modelled as

H

1

: Y � f

Y

(y j �) with � 2 �

H

1

and

H

0

: Y � f

Y

(y j �) with � 2 �

H

0

(2:12)

where � is the set of all possible values of the parameter vector �, �

H

1

and �

H

0

are

disjoint subsets of � such that � � �

H

1

[ �

H

0

and �

H

1

\ �

H

0

= ;. The problem is

to design a decision rule �(y) which partitions the set of realizable observations fyg

into two regions �

0

and �

1

, such that observations in �

i

correspond with a decision

to accept hypothesis H

i

.

For the binary hypothesis testing problem, there are two types of decision errors.

1. Type I: Accepting H

1

when H

0

is true (False Alarm), and

2. Type II: Accepting H

0

when H

1

is true. (Missed Detection).

We will de�ne the probability of a Type I error (probability of false alarm, P

FA

) as

� and the probability of a Type II error (probability of missed detection, 1� P

D

) as

�. These error probabilities are an important measure of the performance of a given

decision procedure and are often quoted in system performance requirements.

The performance of a given decision rule can be expressed as a function of the

signal parameter vector �. A plot of the probability of detection versus �, the power

function, is one measure of the detection performance of a decision rule under di�erent

signal models. A more complete performance measure is the family of plots of the
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probability of detection versus the probability of false alarm, indexed by �. This plot

is commonly referred to as the Receiver Operating Characteristic (ROC) [63].

The performance of a given decision procedure is dependent on its ability to sep-

arate the mapping of received observations under hypothesis H

1

(target signal) from

the mapping of received observations under hypothesis H

0

(background signal). In

turn, the separability of the target and background signals is dependent on their

relative statistical dependence and signal strengths. For some signal models, detec-

tion performance can be expressed as a function of the distance between the signal

distributions of (2.12).

Given an ability to analyze the performance of a given decision rule, the question

arises as to how to design an optimal decision rule. Ideally, an optimal decision rule

would both minimize the probability of false alarm, �, and maximize the probability

of detection, 1��. However, these are con
icting requirements. Various cost functions

(Bayes, minimax and Neyman-Pearson) have been designed to balance the relative

importance of these two types of decision error [63]. These cost functions lead to

decision rules which can be described as the comparison of a likelihood ratio function

to a decision threshold, �

�(y) =

8

>

>

>

>

<

>

>

>

>

:

1; > �

r;

f

Y

(yj�2�

H

1

)

f

Y

(yj�2�

H

0

)

= �

0; < �

(2:13)

where �(y) is the probability of accepting hypothesis H

1

.

In practice, the most common signal detection problem is the detection of a known

signal in additive noise [63, 64]. This is a binary hypothesis testing problem where

the observations y can be expressed as

y = s

1

+ n under H

1

and

y = s

0

+ n under H

0

,

(2:14)

The signals s

i

for this problem may be deterministic and completely known, determin-

istic with unknown parameters (e.g. amplitude) or they may be non-deterministic

signals with known probability density functions. The detection algorithms which

follow are all variations of this basic problem.

18



If the observations y

i

are realizations of mutually independent and identically dis-

tributed random variables Y

i

, then evaluation of the decision rule is greatly simpli�ed.

De�ning a likelihood ratio function L(y

i

) as

L(y

i

) �

f(y

i

j � 2 �

H

1

)

f(y

i

j � 2 �

H

0

)

(2:15)

the decision rule (2.13) can be expressed as a function of

Q

n

i=1

L(y

i

). Since lnx is a

strictly increasing function of x, (2.13) can be expressed as a log-likelihood decision

rule

�(y) =

8

>

>

>

>

<

>

>

>

>

:

1; > ln �

r;

P

n

i=1

lnL(y

i

) = ln �

0; < ln �

(2:16)

This decision rule suggests a simple, easily analyzable detector structure consisting

of a time-varying point non-linearity followed by an accumulator and a threshold

comparator.

In general, the performance of any optimal decision procedure will improve as

the number of observations increases. Many of the algorithms that follow attempt

to exploit this property. However, the decision procedures for the binary hypothesis

testing problem assume that either

Y � f

Y

(y j � 2 �

H

1

) or

Y � f

Y

(y j � 2 �

H

0

)

(2:17)

If the binary hypothesis model is compromised and the received observations are not

identically distributed, the detection error rate will increase.

2.2.1 Point-Source Target Detection

Given a model for the image formation process, the detection of a point-source target

with a known trajectory can be treated as the detection of a known signal in additive

noise. The observation set y for this problem consists of the set of image pixels

y = fI[x

j

; y

k

; t

l

] j w

j;k;l

(x

t

(t); y

t

(t)) 6= 0g: (2:18)

This set of image pixels can be determined by evaluating (2.9), or more generally

(2.5), for an assumed target trajectory.

19



In general, with image data modelled by (2.5), the target detection problem can

be expressed as a binary hypothesis testing problem where the signal vectors s

1

and

s

0

are complicated functions of the background clutter and target signals. However,

if the target is additive to the background clutter and the sensor can be modelled as

a linear system, then the sensor image data modelled by (2.8) can be expressed as

I[x

j

; y

k

; t

l

] =

8

>

<

>

:

b

i

[x

j

; y

k

; t

l

] + t

i

[x

j

; y

k

; t

l

] + n

i

[j; k; l] in the presence of a target, or

b

i

[x

j

; y

k

; t

l

] + n

i

[j; k; l] in the absence of a target

(2:19)

where

t

i

=

RRR

A(t) p(x� x

t

(t); y � y

t

(t))dx dy dt

b

i

=

R
RR

I

b

(x; y; t) � p(x; y)� �I

b

(x

t

(t); y

t

(t))p(x� x

t

(t); y � y

t

(t)) dx dy dt and

n

i

= N [j; k; l]

(2:20)

The target detection problem can then be expressed in terms of the binary hypothesis

testing problem in (2.14) with

s

1

= t+ b and

s

0

= b

(2:21)

where t � ft

i

j i = 1; 2; : : : ng, b � fb

i

j i = 1; 2; : : : ng, and n � fn

i

j i = 1; 2; : : : ng

correspond with an arbitrary ordering of the observation set y.

The two hypotheses are

� H

1

: a target with amplitude A(t) and trajectory (x

t

(t); y

t

(t)) is present, and

� H

0

: a target with amplitude A(t) and trajectory (x

t

(t); y

t

(t)) is not present.

This problem can then be evaluated for a number of hypothesized target trajectories.

This is a multiple hypothesis approach to the composite hypothesis testing problem

of detecting a known multidimensional signal with unknown, continuous, real-valued

parameters.

There are a variety of noise sources associated with the sensor photodetection

process [62], but the detector noise n in (2.14) is usually modelled as a sum of the

photon shot noise associated with the random photon arrival time, and the thermal
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noise in the detector electronics [25]. In general, the detector noise level is very low

and is not the limiting factor in detection performance. Consequently, the detector

noise process is approximated by a Gaussian iid noise process which de�nes the noise


oor for the detection problem [25, 33]. A notable exception to this practice is the

model for detector noise in a photon limited application such as the wide �eld-of-view

telescope discussed in Chapter 1. In this case the photon noise limits the detection

performance and the detector noise is modelled as the sum of a Poisson random shot

noise process and a Gaussian random noise process [33, 62].

It is well known that the optimal coherent detector (s

1

and s

0

both completely

known and deterministic) for (2.14) with iid Gaussian noise is the correlation detector

or matched �lter [63, 64]

�(y) =

8

>

>

>

>

<

>

>

>

>

:

1;

P

n

i=1

s

?

i

y

i

> �

r;

P

n

i=1

s

?

i

y

i

= �

0;

P

n

i=1

s

?

i

y

i

< �

(2:22)

where s

?

i

= s

1i

� s

0i

. This detector structure can be easily implemented by n'th

sample of the output of a linear digital �lter to a �xed threshold � . The detection

performance of this detector is determined by the parameter

� =

(s

1

� s

0

)

2

�

2

(2:23)

where

(s

1

�s

0

)

2

�

2

is the ratio of average signal power to average noise power in the output

of the matched �lter detector, the output signal-to-noise ratio (SNR).

The matched �lter has the property that its output signal has the highest SNR

of any linear �lter with the same observation set. This result applies to the non-

Gaussian iid noise case as well, if the noise has zero mean and a �nite covariance [63].

The SNR can be viewed as a measure of the distance between the signals s

1

and s

0

.

d

2

= ks

1

� s

0

k

2

(2:24)

Thus, an increase in the SNR can be viewed as an increase in the distance between

the two signals, suggesting an improvement in signal detection performance. It is

intuitively reasonable that improving the signal-to-noise ratio will improve detection

performance for the non-Gaussian iid noise case as well [63].
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The detection optimality of the matched �lter structure in terms of a Bayes,

minimax or Neyman-Pearson criterion is dependent on the Gaussian noise assumption

but the matched �lter structure is a reasonable engineering approximation for the non-

Gaussian case as well. The optimal detector structure for the non-Gaussian case is

generally nonlinear but it can sometimes be modelled as a point non-linearity followed

by a matched �lter structure. In general, the use of the matched �lter structure for

SNR optimization is a common and generally accepted engineering technique even if

the noise is non-Gaussian [64]. This structure is practical to implement and simpli�es

the corresponding performance analyses. This linear approximation is inappropriate,

however, when the noise process contains impulsive non-Gaussian components.

In general, the background clutter signal s

0

is unknown and is more accurately

modelled as a random noise process. Consequently, the largest gains in target detec-

tion performance are achieved by estimating and suppressing the background clutter

prior to signal detection. The optimal linear �lter for SNR optimization in prepro-

cessing the image data for detection is the linear matched �lter. It is well known

that simple, easily analyzable detector structures can be designed for the detection

of a known signal in independent, identically distributed or Gaussian noise. Thus,

it is desirable that the residual background clutter after estimation be uncorrelated

and/or Gaussian.

2.2.2 Background Clutter Suppression

With the signal quality of modern electro-optical sensors, the e�ects of optical back-

ground clutter are a much greater impediment to target detection than the e�ects of

sensor noise (with the Wide-Field-of-View Telescope Application of Chapter 1 being

a notable exception). Consequently, the greatest single-frame detectability gains are

achieved by attenuating the background clutter signal. The following algorithms are

applicable to the class of image sequences which can be modelled by targets which

are additive to the background signal.

Background clutter suppression algorithms attempt to estimate the background

clutter image signal b[x; t] and subtract it from the received image sequence to yield
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a preprocessed image sequence with observations

y = t+ n

?

under H

1

y = n

?

under H

0

(2:25)

where

n

?

= (b�

^

b) + n (2:26)

If the background clutter estimate

^

b[x; t] is successful in capturing the spatio-temporal

behaviour of b[x; t], then the residual noise term n

?

is approximately iid, and the target

detection problem is reduced to the standard problem of detecting a deterministic

signal in additive iid noise [63].

The ultimate goal of any preprocessing function is to improve the achievable target

detection performance. Given complete a priori knowledge of the joint probability

distribution of the image observations under each hypothesis in (2.21), an optimal,

usually non-linear, transformation of the image observations could be derived. How-

ever, in general, the background clutter signal is not known a priori and linear pre-

processing �lters are designed to estimate and decorrelate (whiten) the background

clutter signal. An ideal clutter suppression algorithm would be capable of transform-

ing an arbitrary inhomogeneous, non-stationary background into an approximately

stationary, homogeneous, iid Gaussian noise innovations background without reduc-

ing the e�ective target signal power. In practice, preserving the target signal energy

is the critical consideration for weak targets.

Temporal �lter algorithms

Temporal �lter algorithms exploit the strong temporal correlation between observa-

tions of successive image frames [42, 41, 23, 66, 67]. However, the performance of

these algorithms is dependent on either a stationary image background or precise

image registration [68]. The simplest example of this class of algorithms is the simple

frame di�erence. Image backgrounds which are nearly stationary (the background

motion over the frame integration period is small relative to the total �eld-of-view)

with slowly-varying statistics can be e�ectively suppressed by a sequential combina-

tion of adaptive discrete frame registration and linear �ltering. In general however,

the image background is dynamic and statistically non-stationary.
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Spatial �lter algorithms

Spatial �lter algorithms estimate the background clutter signal directly from the im-

age observations [69, 70, 23, 66, 67] or from a target free reference image [71, 72].

Previous frames in the image sequence or images from di�erent spectral bands of a

multispectral sensor are often suitable reference images. Many of these algorithms are

adaptive and assume no knowledge of the background statistics. Adaptation to local

characteristics within the scene is achieved by locally estimating the background im-

age covariance matrix and then inverting the matrix to compute linear �lter weights.

This approach is optimal in the sense that no other linear �lter can achieve higher

clutter suppression, but is computationally very intensive.

Three-dimensional matched �lter algorithms

Reed et al. derived the optimal three-dimensional, linear, matched �lter for point-

source targets of known velocity in image sequences with additive background clutter

and noise [25, 30]. This �lter is optimal in the sense that no other linear �lter can

achieve a greater signal-to-noise ratio in the �lter output signal. Although the deriva-

tion of this �lter assumes complete knowledge of the target, background and noise

signals, it speci�es the maximum achievable signal-to-noise ratio and demonstrates

how the characterisitics of the target, background clutter, sensor optics and noise

a�ect �lter design and performance. The three-dimensional matched �lter can be

viewed as the optimal linear preprocessor for target detection when the target trajec-

tory, target, background and noise signals are completely known.

Reed et al. implemented their three-dimensional matched �lter in the Fourier

transform domain. Their approach is to transform the image sequence, apply a

matched �lter tuned to the frequency domain signature of the moving target, in-

verse transform the �ltered data and then threshold the time domain output for

detection. The �lter uses the assumed target velocity to coherently integrate the

target energy along a linear, constant velocity trajectory. Thus, the �lter can be

viewed as a sliding-window correlation of the target pro�le as it moves through the

image sequence volume, e�ectively integrating the target energy across space and

time. The inverse transform of the result has an enhanced signal-to-noise ratio with
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peaks representing the initial position of targets with the assumed target velocity.

The primary advantages of �ltering in the Fourier domain are the ability to si-

multaneously detect all targets with the same Fourier signature, moving at the same

velocity in the imaged scene and to accomodate non-integer target velocities which

are problematic in equivalent time-domain techniques. The primary drawback of this

approach is the requirement that the �lter be matched to a speci�c velocity pro�le

of a known target moving at a known speed in a particular direction. The e�ects of

velocity mismatch for these �lters are dramatic, particularly for higher target veloci-

ties.

This problem can be partially overcome by designing a bank of �lters to cover

the desired range in speed and direction. If the target intensity is reasonably con-

stant over time, then the SNR performance of a perfectly matched three-dimensional

�lter increases linearly with the number of frames processed. If however, the target

intensity varies, then the three-dimensional �lter is simply equivalent to a coherent

addition of the spatial matched �lter responses of each frame in the sequence.

Reed et al. applied the results of their three-dimensional matched �lters to the

development of a recursive moving target indicator (RMTI) algorithm with greatly

reduced computational complexity [39]. The RMTI algorithm exploits the fact that

the di�erence between the two-dimensional Fourier transforms of successive images

is a periodic function. By shifting the two-dimensional Fourier transform of each

image in phase, using the known target velocity, the target energy can be coherently

summed as a weighted sum of two-dimensional Fourier images. A two-dimensional

matched �lter for the target signature can then be applied and the result inverse

transformed as before.

The advantage of this approach over the full three-dimensional matched �lter

is the reduction in computation and data storage a�orded by the reduction in the

dimensionality of the required Fourier transforms. The RMTI algorithm can process

each frame recursively without the cost of computing a three-dimensional Fourier

transform for each new frame and the cost of the memory required to store the

preceding N frames. However, the RMTI approach requires a prewhitened image
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sequence [71, 72] in order to fully achieve its predicted performance. As with the three-

dimensional matched �lter, this approach is critically dependent on precise knowledge

of the target velocity relative to the image background and is subject to a dramatic

loss of performance with velocity mismatch.

Summary

The development of high performance clutter suppression and target enhancement

algorithms with a�ordable levels of complexity is critical to improving the perfor-

mance of surveillance systems for detecting weak targets. These algorithms are of-

ten refered to as prewhitening algorithms because of the critical need to decorrelate

the image background observations prior to detection. The assumption of iid im-

age observations is critical to the successful application of standard signal detection

techniques. Recently, three-dimensional spatio-temporal and four-dimensional spatio-

temporal/multispectral �lters have been proposed and analyzed [73{77]. These al-

gorithms incorporate models of the target signal and the image background and a

priori knowledge of the target and background statistics to maximize the signal-to-

noise ratio of the �ltered image data.

2.2.3 Detect-Before-Track Algorithms

`Detect-before-track' algorithms can be characterized by decision rules which make

hard detection decisions after every frame. Typically the incoming image sequence

is preprocessed with a �lter designed to suppress the background clutter signal and

then the optimal Bayes, minimax or Neyman-Pearson decision rule is applied to the

pixels in the preprocessed image. The detection model for these algorithms is given

by (2.25) with the image observation set y for image frame l given by

y = fI[x

j

; y

k

; t

l

] j w

j;k;l

(x

t

(t); y

t

(t)) 6= 0 (l � 1)�t � t � l�tg (2:27)

In practice, the target trajectory is unknown and it is computationally infeasible

to design an optimal detector for the continuum of possible target positions. Con-

sequently, a suboptimal set of discrete target positions is tested with a concomitant

loss in detection performance. If the target is assumed to be located at the centre
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of one of the detector pixels, a single decision rule can be designed to test for the

presence of a target centred on each pixel in the image frame. The performance loss

incurred by assuming the target is centred on a detector pixel can be evaluated as a

function of the sensor point-spread function and the detector response. This loss can

be reduced by subsampling the pixel surface area and designing a bank of detectors

for a �nite number of subpixel target locations.

The simplest example of this class of algorithms is the application of a single �xed

threshold to each pixel in the image frame. This is the optimal detection procedure for

the detection of a constant intensity point-source target in an additive iid Gaussian

noise background under ideal imaging conditions

Y � N(�

1

; �

2

) under H

1

Y � N(�

0

; �

2

) under H

0

(2:28)

where N(�; �

2

) is the standard Gaussian probability density function with mean �

and variance �

2

. As discussed in section 2.1, under ideal imaging conditions, the

target image consists of a single pixel and is independent of the subpixel location of

the target on the sensor focal plane. This implies that a single optimal test can be

designed to independently detect the presence of a target in each pixel in the image

frame.

Since the image observations for this problem are realizations of iid Gaussian ran-

dom variables, the optimal decision rule can be expressed as a log likelihood decision

rule (2.16) with

L(y) =

N(�

1

; �

2

)

N(�

0

; �

2

)

(2:29)

Those pixels which exceed the decision threshold are declared target detection ob-

servations. Although this approach is computationally very simple, acceptable per-

formance in terms of the detection error probabilities � and � for practical imaging

systems is dependent upon a high intrinsic single pixel signal-to-noise ratio or ap-

proximately ideal imaging conditions.

Change Detection Algorithms

When the signal under the target present hypothesis H

1

is completely unknown but

the signal under the target absent hypothesis H

0

can be estimated, decision rules can
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be derived for the binary hypothesis problem [25, 78, 79]

� H

1

: f(y) 6= f

H

0

(y)

� H

0

: f(y) = f

H

0

(y) .

This model assumes that any image signal which is statistically di�erent than the es-

timated image signal is a target signal. Consequently, the performance of these tech-

niques is highly dependent on an adequate estimate of the image background. The

probability distribution of image observations in the absence of a target is ususally

estimated from reference images such as previous frames in the image sequence or cor-

related images in other spectral ranges. These techniques can also be used as a coarse

�rst stage detection �lter in a multi-stage detection algorithm (see section 3.3.1).

Optimal decision rules for the composite two-sided detection problem de�ned

above do not exist in general [64]. However, if the target signal model is known

and it is known a priori that the target is not initially present, change detection

algorithms can be designed which exploit target free reference images to detect the

initial appearance of the target. For example, Reed et al. have developed a constant

false alarm rate (CFAR) detection algorithm which exploits target free reference im-

ages to detect the initial appearance of a known target [71, 72, 80]. They claim that

their algorithm can achieve as much as a 10 dB improvement in the e�ective detec-

tion signal-to-noise ratio with a single correlated reference image. In general, the

performance achieved by this approach improves with an increase in the number of

reference images and is dependent on the correlation between the reference images

and the current image.

Track Assembly

For some applications, frame by frame detection is insu�cient to meet system de-

tection performance requirements. For these cases, track assembly algorithms have

been developed which project preprocessed images onto a single target track image

for detection. By exploiting target trajectory properties such as motion continuity,

smoothness or temporal persistence, heuristics can be proposed to suppress spurious
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detections [23, 24, 29, 54, 42]. These algorithms are often referred to as streak detec-

tors since they typically detect single pixel detections which form linear or curvilinear

trajectories in the target track image. Although these algorithms are computationally

attractive their ability to detect weak targets is suboptimal.

The optimal projection scheme for multidimensional Neyman-Pearson detection

of known targets in iid noise (see (2.25)) was derived by Chu [29] providing a baseline

for comparing the performance of the heuristic algorithms described above. Chu

analyzed the performance loss (' 3 dB for an unprojected data SNR of 10dB) of

the optimal projection scheme relative to a full multidimensional matched �lter (see

section 2.2.5). A maximum value projection scheme was also proposed which is a

good approximation to the optimal projection scheme for unprojected data with a

SNR greater than 6 dB.

2.2.4 Frequency Domain Algorithms

Frequency domain techniques exploit di�erences in the spatiotemporal frequency spec-

tra of the target and background clutter/noise to detect moving targets. In general,

moving point-source targets tend to have a higher spatial frequency content, due to

their limited spatial extent, and a higher temporal frequency content, due to their

relative motion, than do background clutter and noise signal sources. The following

algorithms derive optimal decision rules for target detection in the Fourier domain.

Warren has proposed a sequential generalized likelihood ratio detector, condi-

tioned on target amplitude and location, for small targets in homogeneous stationary

additive background clutter [81]. This detector is implemented in the Fourier do-

main by sequentially processing the spatial Fourier transform of the incoming image

frames. Each spatial frequency component is e�ectively processed independently in

time. SNR enhancement is achieved by separating the target and clutter signals in

the spatial frequency domain and by estimating the clutter mean and covariance for

clutter suppression.

Porat and Friedlander proposed a class of frequency domain directional �lters to

enhance targets with an assumed linear, constant velocity trajectory [37]. A direc-

tional �lter is designed for each candidate trajectory and the resulting �lter bank used
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to test an image sequence for the presence of targets with the assumed characteristics.

The output of each �lter is an image which corresponds with a two-dimensional slice

of the spatio-temporal image volume.

The output of those �lters for which a target is detected are processed in the time-

domain to estimate the trajectory of each target with a given directionality. This

approach has the advantage of being independent of target position. Each directional

�lter will detect the presence of any target with the assumed target velocity. The

primary di�erence between this approach and the three-dimensional matched �lter of

section 2.2.2 is that the target detection decisions are made in the Fourier domain. A

similar approach for constant intensity targets was proposed by Bruton and Bartley

[27].

2.2.5 Track-Before-Detect Algorithms

For low contrast targets (preprocessed SNR < 10 dB), single frame and track assembly

algorithms are often insu�cient to meet detection performance speci�cations. The

`track-before-detect' approach to the MFTDT problem is to estimate or track a large

number of possible candidate target trajectories without initially declaring the pres-

ence of a target. The likelihood that a target with the assumed characteristics is

present is then evaluated for each candidate trajectory.

Given an assumed target trajectory, a maximally overlapping set of target trajec-

tory pixels can be found, and a decision rule may be designed for optimal detection

conditioned on the assumed target trajectory. The following `track-before-detect'

algorithms employ detection decision rules for the image observation set y

y = fI[x

j

; y

k

; t

l

] j w

j;k;l

(x

t

(t); y

t

(t)) 6= 0g: (2:30)

for an assumed target trajectory (x

t

(t); y

t

(t)). The increase in detection sensitivity

over single frame detection algorithms is a direct function of the increased sample size

of the image observation set.

30



Velocity Filters

The velocity �lter approach, �rst proposed by Mohanty [22], is to exhaustively test

a complete set of time-domain candidate target trajectories for the presence/absence

of a target. Given statistical models for image observations in the presence and

absence of a target, the optimal detector for each trajectory can be designed using

classical detection theory. For the case of a known target in an additive Gaussian

noise background, the velocity �lter approach is equivalent to a time-domain version

of the three-dimensional matched �lter described in section 2.2.2 [33, 32].

Given the image sensor's response to an arbitrary point-source target (2.9), an

optimal set of image observations y can be selected for the binary hypothesis testing

problem of (2.25). This amounts to binary hypothesis testing of the collection of

image pixels y, against a suitable threshold, � , for the absence (H

0

) or presence (H

1

)

of a target. For example, the decision rule for a constant intensity target in zero

mean, additive, iid Gaussian noise can be expressed as a log-likelihood decision rule

(2.16) with

L(y

i

) =

N(Aw

j;k;l

; �

2

)

N(0; �

2

)

: (2:31)

It is assumed that the observations along a true target trajectory and the obser-

vations along hypothesized trajectories through the image background can be char-

acterized as samples from one of two di�erent probability distributions with known

parameters.

H

0

: Y � f

Y

(y j � 2 �

0

) For false trajectories.

H

1

: Y � f

Y

(y j � 2 �

1

) For true target trajectories.

(2:32)

Note that this is a batch processing technique. The decision rule is designed to make

an optimal decision for the image observations received over K frames. The same

number of observations are used in evaluating each candidate trajectory. Hence,

these hypothesis tests are referred to as �xed sample size (FSS) tests.

Typically, targets are assumed to follow linear, constant velocity trajectories, at

least over a short time interval. This assumption is reasonable for many targets, if the

sensor frame rate is su�ciently high, and e�ectively constrains the trajectory search

space to be a function of three target parameters
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1. initial position,

2. speed, and

3. angular direction in the focal plane.

These three parameters de�ne a subspace of <

3

where a real target trajectory is

de�ned by a single point (p; s; d). In principle, there are an in�nite number of real

trajectories which satisfy any a priori constraints on the target's speed, direction or

initial position. The velocity �lter approach is thus a multiple hypothesis approach

to the composite hypothesis testing problem of detecting a known target in additive

noise with unknown parameters. Each binary hypothesis test is of the form (2.25)

with an assumed target velocity and initial position.

Intrinsically, testing a continuous range of assumed target positions and velocities

requires an in�nite number of candidate trajectories. In practice, the candidate tra-

jectory search space can be dramatically reduced by an intelligent partitioning of the

velocity search space [31, 43]. Given a model such as (2.5) or (2.7) for the image for-

mation process, the image plane response for a target with an arbitrary real trajectory

(p; s; d) can be evaluated. Then, by de�ning a maximum acceptable signal-to-noise

ratio loss factor, suboptimal partitions of the trajectory search space (p; s; d) 2 <

3

can be designed [31, 43]. The resulting candidate trajectory set (velocity �lter bank)

minimizes the number of candidate trajectories while limiting the performance loss

due to parameter mismatch.

There have been other attempts to reduce the e�ective trajectory search space

while maintaining desired performance speci�cations. In the following, two algorithms

will be described which approximate the behaviour of the exhaustive approach and re-

duce the computational complexity without unduly sacri�cing detection performance.

The �rst algorithm is a tree-structured multistage hypothesis test algorithm and the

second is an application of the dynamic programming algorithm. Both algorithms

assume the existence of reasonable statistical models for the image trajectories in the

presence or absence of a target and provide explicit mechanisms to compute the key

performance speci�cations: the detection error probabilities of false alarm and missed

detection.
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Tree-structured Multistage Hypothesis Testing

Recently Blostein and Huang proposed an alternative implementation of the velocity

�lter approach which o�ers a substantial reduction in computational complexity [40].

Their approach exploits two key observations. The �rst is that the classical �xed

sample size hypothesis test for each candidate trajectory can be computationally in-

e�cient. The second is that a large number of candidate target trajectories pass

through the same pixels in the �rst few image frames and hence, under ideal imaging

conditions, share common image observations. Their MSHT object detection algo-

rithm exploits a sequential decision rule, a truncated SPRT, to sequentially prune a

dense tree of linear, constant velocity candidate trajectories.

The standard velocity �lter implements a �xed sample size (FSS) hypothesis test

which has a �xed computational cost. An alternative approach is to apply a se-

quential decision rule to the evaluation of candidate trajectories. With a sequential

decision rule, the sample size of the hypothesis test is a random variable. Thus, the

computational cost is also variable.

The classical sequential decision rule is Wald's sequential probability ratio test

(SPRT) [82]. An SPRT compares the partial sums of the likelihood or log-likelihood

ratio statistic to a pair of thresholds after each sample (observation). If the test

statistic exceeds the upper threshold, hypothesis H

1

is accepted, if the test statistic

falls below the lower threshold, hypothesis H

0

is accepted, but if the test statistic

falls between the two thresholds, then the detection decision is deferred for another

sample. It can be shown that a pair of thresholds can be designed to meet any speci�ed

detection error probabilities (� and �) and that the resulting test will terminate.

The advantage of the sequential probability ratio test is that it is data adaptive. In

contrast with the classical FSS test, the number of observations n is a function of the

actual distribution of the received observations. The SPRT takes as many samples as

required to make a decision which satis�es the speci�ed decision error probabilities.

This property is particularly advantageous when the decision error probabilities are

unequal.

For example, typical detection performance speci�cations for a single candidate

trajectory require a much lower probability of false alarm than probability of missed
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detection. Thus, fewer samples are required to meet the performance speci�cations

for a decision to accept the target absent hypothesis H

0

than are required to accept

the target present hypothesis H

1

. The sequential test �xes the desired performance

speci�cations and allows the test sample size to vary as a function of the received

observations while a typical FSS test (Neyman-Pearson) maximizes the probability

of detection for a �xed number of samples and a given false alarm rate. In fact, it can

be shown that under H

0

or H

1

, a sequential probability ratio test has the minimum

average sample size of any likelihood ratio test with detection error probabilities no

greater than � and � [63].

The SPRT has two drawbacks which limit its practicality. The �rst is that al-

though the test is guaranteed to terminate, the maximum sample size is unbounded.

This can occasionally result in undesirably long tests. The second disadvantage is

that the SPRT is sensitive to parameter mismatch. A modest parameter mismatch

can cause the average test length of an SPRT to exceed the length of an equivalent

FSS test.

As a practical compromise, Blostein and Huang proposed the use of Truncated

Sequential Probability Ratio Tests (SPRT) [83]. The truncated SPRT is a sequential

decision rule that is truncated after a �nite number of stages. It is a robust approxi-

mation to Wald's SPRT and can be viewed as a mixture between a FSS test and an

SPRT. The performance of a truncated SPRT is a compromise between the minimum

average sample size of an SPRT and the test robustness to parameter mismatch of

an FSS.

Blostein and Huang describe the truncated SPRT as an important example of a

multistage hypothesis test.

De�nition: a multistage hypothesis test (MSHT) is any sequential test with a

�nite number of stages, K.
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for stage i 1 � i � K � 1, and

K
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(2:33)

where a

i

and b

i

are the decision thresholds for test stage i. Closed-form expressions for

the performance of a multistage hypothesis test with iid observations were derived

by Blostein and Huang. These expresssions were used to predict the performance

of a multistage hypothesis test with iid Gaussian observations and to estimate the

processing and memory requirements of their MSHT object detection algorithm.

Blostein and Huang exploit the smaller average sample size of the sequential de-

cision rule to reduce the computational demands of the velocity �lter approach. The

sequential test rapidly identi�es candidate trajectories where the target is clearly

present or absent, allowing the system to focus its resources on evaluating trajec-

tories where the observations are more ambiguous. The computational savings of

this approach approach are most dramatic when the candidate trajectory set can be

structured as a dense search tree.

Under ideal imaging conditions, the focal plane image of a point-source target is

also a point. Thus, the detected target energy is focused on a single detector pixel

and the intensity of the resulting image pixel is independent of the sub-pixel location

of the target. Thus, the target signal for an arbitrary target trajectory is completely

determined by the sequence of detector pixels upon which the target is focused in

subsequent frames. This reduces the continuum of target positions and velocities to

a discrete set of candidate trajectories quantized by the detector pixel array.

For target velocities of approximately 1 pixel/frame or less, the discrete candidate

trajectory set can be structured as a dense tree of linear, constant velocity trajectories,

as illustrated in �gure 2.1. Those trajectories that pass through the same pixels in the

�rst few image frames share the same initial observations. Thus, if the same decision

rule is applied to all the candidate trajectories, an early decision to reject the target

present hypothesis can simultaneously reject all candidate trajectories with common

observations up to and including the decision stage. Thus, a sequential decision

procedure can achieve a substantial reduction in computational complexity, without

an associated performance loss, by sequentially pruning the dense search tree.
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Figure 2.1: Tree-Structured Trajectory Search
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Dynamic Programming Algorithms

The dynamic programming algorithm (DPA) is a recursive solution to the problem of

�nding an optimal sequence of system states in the temporal evolution of a dynamic

system. The DPA was originally developed to solve problems in multistage optimal

control [84] but has found widespread application in optimal estimation and signal

processing. Recently, there has been signi�cant interest in applying the DPA to the

detection and tracking of low observable, moving point-source targets in a sequence

of digital images [26, 28, 34, 36, 85].

The dynamic programming approach to the MFTDT problem is to �nd the candi-

date target trajectory T

opt

which maximizes the a posteriori probability, conditioned

on all the received image data, that the candidate trajectory is a true target trajec-

tory. This problem can be expressed more succinctly as the search for the sequence

of target states T

k

� [ts

1

; ts

2

; : : : ; ts

k

] which maximizes the likelihood ratio

Pr(H

1

j Y

k

)

Pr(H

0

j Y

k

)

(2:34)

where Pr(H

i

j Y

k

) is the probability that the image observations Y

k

� [y

1

; y

2

; : : : ; y

k

]

along the candidate trajectory T

k

are distributed according to the signal model of hy-

pothesis H

i

(recall (2.14)), conditioned on the image data received up to and including

stage k, Y

k

.

In order to place the target detection and tracking problem in a dynamic program-

ming framework, the image sequence is divided into stages of length G frames/stage.

The set of target states is de�ned as the set of possible target paths through a given

stage from every pixel in image frame i to every pixel in image frame i + G � 1. If

the target trajectories are required to be linear, then the number of states/stage is

equivalent to the number of hypothesis tests required for a FSS velocity �lter over G

image frames.

The system model for the dynamic programming framework can be summarized

by a state transition equation and a model for the image observations under the target

present/absent hypotheses, given by (2.14). The state transition equation is usually

a �rst-order Markov model relating each target state at stage k + 1 to a prior target
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state at stage k through a state transition function st()

ts

k+1

= st(ts

k

; n

k

) (2:35)

with an additive iid noise process n. If the probability of occurrence of any state ts

k+1

is dependent only on the previous state ts

k

, then the transition from a state at stage

k+1 to a state at stage k does not a�ect the optimality of previous state transitions

and the maximization of (2.34) can be divided into two parts such that

max
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The inner maximization is a maximization of the a posteriori probability density

function for the candidate trajectory up to stage k�1, conditioned on the observations

received by image frame k. This function can be used to de�ne a merit function S(T

k

)

to evaluate the candidate trajectories (states) at the end of each stage.

Referring to (2.36), and using Bayes formula
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leads to a recursive formulation for the merit function of the form

S(T

k

) = ln[

Pr(y

k

j ts

k

)

Pr(y

k

j H

0

)

] + ln[Pr(ts

k

j ts

k�1

)] + S(T

k�1

): (2:38)

Note that the merit function for each state can be propagated from stage to stage.

The optimal trajectory at a given stage can be found by searching the set of target

states for the state with the maximum merit function. If a record of the optimal state

transitions at each stage is maintained, then the optimal trajectory can be found by

tracing the state transitions backwards, from the optimal state at any given end stage.

In fact, one need not choose the single trajectory which maximizes the likelihood

ratio of (2.34). Instead all trajectories which exceed a threshold designed to meet

speci�ed detection error probabilities can be declared target trajectories. However,

this process introduces additional processing problems.

The dynamic programming algorithm has a problem with strong cross-correlations

between adjacent target states. A single strong target trajectory will generate strong

responses for similar trajectories, reducing the algorithm's sensitivity to neighbouring
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weak targets. Thus in order to relax the strict maximization, a designer has to provide

heuristic methods for evaluating and maintaining the other target trajectories which

are generated.

In principle, the DPA with a single stage is equivalent to the velocity �lter pro-

posed by Mohanty [22]. The merit function in this case reduces to an evaluation

of the likelihood ratio of the observations received along the candidate trajectories

used in the hypothesis tests of the velocity �lter. This comparison provides a vantage

from which to analyze the computational reduction the DPA achieves by dividing the

image sequence into stages.

Barniv derived an estimate of the number of operations required to implement the

DPA on an M frame sequence of N �N images divided into M=G stages [85].

Total number of operations = 50

M

G

N

2

(G+ 1)

2

[2Gr

o

+ 13] (2:39)

where r

o

is the number of operations needed to evaluate the likelihood ratio

Pr(y

k

jH

1

)

Pr(y

k

jH

0

)

.

From this expression one can derive the approximate relationship that a DPA with

M=G stages requires (G=M)

2

times the number of operations required by anM frame

velocity �lter.

However, this reduction in computational complexity comes at a cost of reduced

performance. The detection performance of the algorithm is manifested in the eval-

uation of the likelihood ratio for the image observations along the target states of

each stage. Thus, the detection sensitivity of the DPA is directly dependent on G,

the stage length.

The stage length is a key parameter in the performance vs computation trade-

o� for the DPA. There is an optimal stage length G which minimizes the required

computations for a desired level of detection performance. However, as the intrinsic

signal-to-noise ratio decreases the optimal number of stages approaches 1. Researchers

have found that the DPA is most e�ective when the intrinsic SNR is from 2 � 5dB.

The computational gain for weaker signals is negligible and there are computationally

simpler algorithms which can attain the same detection performance for stronger

signals.
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2.2.6 Summary

The appropriate target detection algorithm for a given application is dependent on

the required level of performance, as measured by the detection error probabilities

� and �, and the acceptable computational load. The `detect-before-track' algo-

rithms are computationally simple but exhibit reduced senstivity to weak targets.

Conversely, the `track-before-detect' algorithms are computationally expensive but

exhibit substantially improved detection sensitivity. Although the exhaustive veloc-

ity �lter approach is optimal for the detection of known targets in additive Gaussian

noise it is computationally unwieldy and the design of e�cient velocity �lter banks is

a di�cult problem. In practice, suboptimal `track-before-detect' algorithms trade a

loss in optimal detection performance for a substantial decrease in the computational

load.

2.3 Multitarget Tracking and Data Association

Multitarget tracking (MTT) is an essential function of surveillance systems designed

to identify individual targets in a noisy, cluttered, multitarget environment. Tradi-

tionally, target tracking in noisy, cluttered environments has been treated as a problem

in associating detected target observations with target tracks in a dense multitarget

environment. This problem is posed as a state estimation problem where the system

state is augmented to account for uncertainty in the origin of the state observations.

Any individual observation could have a false target detection or one of an unknown

number of true targets, as its source. Thus, the performance of these techniques is

fundamentally dependent on target detection performance. Recently, increasingly de-

manding MTT system requirements have fostered an interest in combining the target

detection and tracking problems.

The function of a multitarget tracking algorithm is to estimate the state of each

target in the sensor's �eld-of-view from the detected target observations produced by

the sensor's signal processing unit (see �gure 1.2). This task has to be accomplished

in the presence of uncertainty in the origin and accuracy of the target observations.
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In what follows, the MTT problem will be addressed in three parts: state estima-

tion and prediction, data association (track formation and maintenance), and track

con�rmation and deletion.

2.3.1 Target State Estimation and Prediction

Targets are typically modelled as dynamic systems with a state-space representation.

In this framework, the target state is a vector of parameters which characterizes an

underlying model of the target dynamics [7]. The target state typically consists of

kinematic parameters such as target position, velocity and acceleration; and auxiliary

parameters such as signal strength and target spectral response. Multiple models of

target dynamics may be required to account for di�erent modes of target behaviour

or target manoeuvres [5{7].

A typical target observation includes noisy measurements of the target's position

and signal strength. Given a sequence of observations of an individual target, the

target state can be estimated and predicted using standard state estimators such as

a Kalman or �xed coe�cient �lter [6, 7]. These �lters use estimates of the accuracy

of the target observations to estimate the resulting accuracy in the state estimates.

Modi�cations to these standard �lters are often required to account for the possibility

of misassociation [7].

The accuracy of the state estimates is dependent on

� the accuracy of the assumed model for target dynamics and observations,

� the accuracy and information content of the target observations, and

� the purity of the observation set used for state estimation.

where track purity is a measure of the number of observations which have been in-

correctly associated with a given target track. The standard state estimation �lters

are designed to manage the uncertainty associated with the accuracy of the target

observations. However, their performance degrades substantially in the presence of

association errors. Association errors can corrupt the covariance estimate of the �lter

and lead to a loss of track or track deletion. In a dense multitarget environment, the
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success of the MTT algorithm in partitioning the set of target observations into sub-

sets of observations, or target tracks, associated with individual targets is a critical

factor in tracking performance.

2.3.2 Data Association

The formation of target tracks in a noisy, cluttered, multitarget environment is con-

founded by a signi�cant degree of uncertainty in the origin of the target observations.

Any individual observation could be from a false alarm, or from any of an unknown

number of true targets and for any set of target observations, there is usually more

than one plausible way to partition the observations into target tracks. This parti-

tioning of the observation set or data association is the �rst task of any MTT system.

One can identify two distinctive data association tasks:

1. observation-to-observation association or track formation (initiation), and

2. observation-to-track association or track maintenance (update).

New observations are considered as updates to existing target tracks and as a source

for the initiation of new target tracks. Typically, the data association process begins

with a gating procedure designed to exclude consideration of improbable observation-

to-track associations.

The gating procedure de�nes a region or gate around the predicted position of

each target track. Only those observations which fall inside the gate are considered

as candidates for association. Typically, the size of the gate is a function of the

expected target dynamics, including manoeuvres, and the covariance estimate of the

state estimation �lter.

If a target observation falls inside the gate of a single target track, and is the

only observation to do so, then the association task is complete. However, in a noisy,

cluttered, multitarget environment, multiple observations may fall within the gates

of each target track and each observation typically falls within the gate of more than

one target track. Under these conditions, the gating procedure only partially resolves

the data association problem.
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There are three basic approaches to resolving the remaining ambiguity in observation-

to-track association

� deterministic or non-Bayesian probabilistic algorithms (Type I),

� single-frame Bayesian probabilistic algorithms (Type II), and

� multiframe Bayesian probabilistic algorithms (Type III).

Type I algorithms view the data association problem as a multidimensional as-

signment problem [86]. They attempt to �nd a unique pairing of observations to

tracks such that each track is updated by a single observation which minimizes a

local or global cost function. The optimal solution to these problems is NP complete

[86] so suboptimal solutions are often used. These algorithms make hard association

decisions at the end of every frame and lack explicit means for incorporating the prob-

ability of misassociation in the subsequent state estimates. Thus, these algorithms

perform poorly in the presence of false alarms or in a dense target environment.

The nearest-neighbour (NN) approach [6, 7, 9] is typical of this type of tech-

nique. An NN algorithm �nds a set of unique observation-to-track associations which

minimizes a measure of the distance between the expected target position and the

observation accepted to update the track. Each track consists of a sequence of ob-

servations, one from each image frame, which are assumed to originate from a single

target.

Type II algorithms incorporate all the observations in the target track gate in the

subsequent state estimate. Each observation is associated with the track in propor-

tion to their probability of association. This produces a probabilistic weighted sum of

the gated observations as a state update observation. The probabilistic data associ-

ation (PDA) and joint probabilistic data association (JPDA) �lters [10] are classical

examples of this type of all-neighbour algorithm. Typically a Type II algorithm has

2 to 10 times the computational requirements of a Type I algorithm.

Type III algorithms attempt to consider all possible association decisions over a

number of frames and make soft (i.e. not irreversible) association decisions. Multiple

hypotheses are maintained with the knowledge that the most likely hypothesis at

a given stage may be the continuation of a less likely hypothesis from a previous
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stage. The computational cost of maintaining multiple association hypotheses can be

an order of magnitude greater than the cost of a Type II algorithm, but a Type III

algorithm �nds the best (maximum likelihood) data association conditioned on all the

received observations. In practice, the optimal maximum likelihood approach must

be sacri�ced, as only a �nite number of hypotheses can be maintained.

The multiple hypothesis tracking (MHT) approach [7, 8, 11] is a method of evaluat-

ing competing data association hypotheses by evaluating the a posteriori probabilities

of their validity, conditioned on the received observations. Each hypothesis consists of

a set of observation-to-track associations, where any individual observation-to-track

association may belong to more than one hypothesis. New hypotheses are generated

from old hypotheses after every observation update. Thus, each new hypothesis has

a well-de�ned prior probability, the a posteriori probability of its parent hypothe-

sis. This allows the likelihood of competing hypotheses to be evaluated recursively,

conditioned on the most recent observation update. In principle this is an optimal

Bayesian approach. However, in practice only a �nite number of hypotheses can

be maintained, so hypotheses with a small but nonzero probability are deleted and

similar hypotheses are merged.

De�ning the sequence of observation updates asD
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Thus, an evaluation of all the data association hypotheses relating the detected target

observations d

k

to the current set of target tracks is required to update the likelihood

function for each hypothesis. In practice, many if not most of these hypotheses will be
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deleted. Thus, as the number of detected target observations increases this approach

becomes extremely ine�cient in its use of computational resources.

Blackman et al. have recently proposed an e�cient, track-oriented implementa-

tion of multiple hypothesis tracking for dense, multitarget environments [35]. The

Structured Branching (SB) implementation of multiple hypothesis tracking replaces

the evaluation of competing data association hypotheses (2.40) with an evaluation of

target track hypotheses T

i
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In practice, there may not be a detected target observation corresponding with each
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is the M-dimensional Gaussian probability density function for the observation resid-

ual of the Kalman �lter, with residual covariance matrix S, used for target state

estimation [7].

Instead of directly generating global data association hypotheses, the SB imple-

mentation generates and evaluates single-track hypotheses. Those target tracks which

are con�rmed by the SPRT are then used to generate and evaluate global data asso-

ciation hypotheses. By evaluating individual tracks prior to the formation of global

hypotheses, the computational complexity of the multiple hypothesis tracking ap-

proach is substantially reduced.

Note that this approach di�ers from the multistage hypothesis test proposed by

Blostein and Huang. It is making a probabilistic decision based on a model of the

target state space dynamics whereas the multistage hypothesis test algorithm pro-

posed by Blostein and Huang evaluates the observations in terms of a received signal

model. The SB-MHT algorithm operates on detected target observations and its likeli-

hood ratio is a function of the detector error probabilities and the residual covariance

matrix of the state estimator.

Summary

The following general comments can be made regarding the suitability of the previous

data association techniques for various target environments. Type I algorithms are

appropriate in sparse target environments where the false target density is low. Their

performance can be improved by introducing a limited branching process similar to

the MHT approach [15] and by modifying the state covariance estimate with an es-

timate of the probability of misassociation [7]. For moderate target densities, Type

III algorithms o�er the best performance due to their ability to correct association

errors with the reception of additional observations. However, as the target density

increases computational limitations preclude the use of Type III algorithms. Under

these conditions Type II algorithms may be successfully applied. Their simple recur-

sions eliminate the overhead associated with multiple association hypotheses while

the incorporation of multiple observations provides a measure of robustness to asso-

ciation errors. In extremely dense target environments it is di�cult to maintain the
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identity of individual targets, hence, group tracking methods are often applied [7].

2.3.3 Track Life Stages: Initiation, Con�rmation, Deletion

The level of uncertainty associated with existing tracks, or track quality, is continu-

ously monitored throughout the life of a target. In general, target tracks are formed

(birth), con�rmed and updated (life), and eventually deleted (death) as targets are

acquired and lost. Low quality tracks are deleted to reduce the number of false tracks

and high quality tracks are used to estimate current target states and to predict fu-

ture target positions. These predictions are then used to aid in data association for

the next set of target observations as the processing cycle repeats.

Incoming observations are �rst considered as updates for existing target tracks.

Observations which are not associated with existing tracks are then considered for the

initiation of new target tracks. There are many heuristic algorithms used for track

initiation and typically, these new tentative tracks have to be con�rmed before they

are used for state estimation.

Simple track con�rmation rules can be de�ned by requiring that M of the last

N observation sets contain observations correlated with the newly initiated track or

that the likelihood or score function associated with the track hypothesis exceeds a

certain threshold. The streak detectors and `track-before-detect' algorithms discussed

in section 2.2 are also well suited to this task. They combine the functions of target

detection, track initiation and track con�rmation. Similar heuristics can be de�ned

for track deletion. Tracks are deleted when the track likelihood falls below a certain

threshold or when the last N observation sets did not contain observations suitable

for track update.

2.3.4 Summary

Traditionally target detection and tracking have been treated as separate problems.

Recent demands for improved MTT system performance in increasingly challenging

signal environments have driven the development of both multiframe detection and

multiframe association algorithms which attempt to make optimal use of all available

information. These algorithms make detection and association decisions conditioned
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on all the received sensor data by generating, evaluating and updating multiple hy-

potheses as further observations are received.

Recent developments in multiframe `track-before-detect' algorithms and multiple

hypothesis tracking algorithms are converging towards a joint multiframe solution to

target detection and tracking problems. In particular, consider the striking similari-

ties between the recursive update equations for the dynamic programming approach

to target detection (2.38) and the structured branching implementation of multiple

hypothesis tracking (2.45). Both algorithms evaluate multiple hypotheses in terms

of the likelihood that the hypothesis is valid conditioned on all the received obser-

vations. The update equation for the DPA has an additional term which re
ects its

�rst order Markov model for the target track. The primary di�erence between the

two approaches lies in the evaluation of the likelihood ratio function. The DPA, like

all `track-before-detect' algorithms, evaluates a likelihood ratio which is a function

of the assumed signal models for the target observations, while the SB-MHT algo-

rithm evaluates a likelihood function which is a function of the probabilistic state

space model for the target dynamics as a function of detected target observations. In

the following chapter, a multiple hypothesis tracking implementation of Blostein and

Huang's multistage hypothesis test algorithm will be presented as an attempt to unify

these two paradigms. The resulting Multiple Multistage Hypothesis Test Tracking

(MMHTT) algorithm provides a uni�ed framework for the detection and tracking of

low observable, point-source targets in digital image sequences.
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Chapter 3

Multiple Hypothesis Sequential

Detection and Tracking

A new approach for detecting and tracking point-source targets in a sequence of digital

images will be developed in this chapter. The algorithm to be presented is a multiple

hypothesis tracking algorithm which exploits a recent sequential detection algorithm,

Multi-Stage Hypothesis Tests (MSHT) [40], for combined target detection and track

initiation. The Multi-Stage Hypothesis Testing (MSHT) algorithm was originally

proposed as a `track-before-detect' solution to the detection of moving, sub-pixel

targets [40]. However, there was no provision in the original implementation of the

algorithm to extend the detected target trajectories and perform active tracking.

In this chapter an algorithm will be developed which exploits a new implemen-

tation of the MSHT algorithm in a multiple hypothesis tracking scheme. By in-

corporating the test statistic, from the sequential probability ratio test used in the

MSHT algorithm, in a likelihood function for evaluating candidate track hypotheses

a multiple hypothesis tracking algorithm is developed around the MSHT algorithm.

The result is a new sequential algorithm for joint target detection and tracking. The

new algorithm, Multiple Multistage Hypothesis Test Tracking (MMHTT), provides a

uni�ed framework for sequential detection and tracking in a multitarget environment.
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Starting Assumptions

Reconsider the Multiframe Target Detection and Tracking Problem presented in

Chapter 1. Given a sequence of K, (M �N) digital images

I[x; y; t] = fI[x; y; t] j 1 � x �M; 1 � y � N; 1 � t � Kg (3:1)

the MFTDT problem is to detect the presence of any targets in the image volume

(�gure 1.1) and to track the path of each detected target. The number of targets

present and their initial positions and velocities is unknown. However, it will be

assumed that the targets satisfy the point-source target model (2.2) of Chapter 2,

the image sequence has been preprocessed to suppress background clutter, and the

preprocessed image pixels can be modelled by (2.14) with

s

0

= 0

s

1

= t

(3:2)

where the noise process n is assumed to be iid but not necessarily Gaussian. In

general, the MMHTT algorithm can be applied to image sequences where the image

pixels can be modelled as (2.12) with independent observations y such that

f
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y2y

f

Y

(y j �): (3:3)

In fact, this model will be used in the feature point detection and tracking system

described in Chapter 5.

3.1 Target Detection

The MMHTT algorithm employs a multiframe, time-domain `velocity �lter' (see sec-

tion 2.2.5) approach to target detection. With this approach, target detection is

treated as a multiple hypothesis detection problem. A large set of candidate target

trajectories is constructed to test for the presence or absence of a target with an

assumed trajectory. The candidate trajectory set is designed to span the range of

expected target trajectories while maintaining an acceptable loss in detection perfor-

mance due to trajectory mismatch.
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The likelihood that a target with the assumed characteristics is present is then

evaluated for each candidate trajectory. In the following, the multistage hypoth-

esis test approach, [40], is used to evaluate the candidate trajectories. Undecided

candidate trajectories are stored in a data structure which is indexed by the cur-

rent hypothesized target location. This local tracking information is then used to

implement a multiple hypothesis tracking scheme for the generation, evaluation and

management of target track hypotheses for state estimation.

In this section the target detection functions of the MMHTT algorithm will be

developed. The section begins with a discussion of the tree-structured candidate

trajectory set and the multistage hypothesis test in [40]. Modi�cations and general-

izations of Blostein and Huang's algorithm to facilitate multiple hypothesis tracking

and improve computational e�ciency will then be outlined and discussed. The key

concepts are the use of a sequential decision procedure, with easily analyzable per-

formance, for candidate trajectory evaluation and the imposition of a dynamic data

structure to manage local detection and tracking information for multiple hypothesis

tracking.

3.1.1 Forming candidate trajectories

In the following, it will be assumed that target trajectories can be approximated, at

least locally, as linear, constant velocity trajectories. This is a valid assumption for

many targets if the sensor frame rate is su�ciently high. The assumption of linear,

constant velocity trajectories is not an inherent limitation of this approach, but it

limits the computational demands on the resulting system. In general, candidate

target trajectories may have arbitrary dynamics (e.g. curved, linear accelerating, etc.)

but without some restrictions, the number of candidate trajectories is unbounded.

As discussed in section 2.2.5, if the target image can be approximated by a point

on the detector array, then a discrete tree-structured candidate trajectory set can be

designed to test a continuous range of target trajectories. Although any candidate

trajectory set can be evaluated using the MMHTT algorithm, the discrete, tree-

structured trajectory set is simple to analyze and highlights the reduction in compu-

tational complexity a�orded by a sequential decision rule. Thus, the tree-structured
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candidate trajectory set will be developed in the following as an illustration of the

bene�ts of the sequential approach.

If it can be assumed that the imaging system is ideal (i.e. the sensor optics pre-

serve the impulse response of a point-source target) and the detector array is spatially

contiguous (no gaps between detector elements), then the target image can be ap-

proximated by a point on the sensor focal plane. In practice, the sensor point-spread

function has a �nite blur radius. However, if the spatial resolution of the sensor optics

is su�ciently great relative to the spatial resolution of the sensor detector array, then

the target image response can be approximated by a point in the image plane. The

resultant SNR loss can be calculated as a function of the target signal strength, the

noise power and the sensor point-spread function.

For example, if a matched �lter detector is used to test candidate trajectories for

an ideally imaged target, with constant intensity A, in an additive iid Gaussian noise

background, the SNR at the output of the matched �lter is [63]
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is the intrinsic signal-to-noise ratio and 10 log n is the multiframe SNR

gain. The output SNR of an equivalent matched �lter for a target imaged by a real

sensor, with a �nite blur radius, can be expressed in terms of (2.11) as
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The SNR loss incurred by assuming an ideal imaging system can then be expressed

as a function of the mismatch between the correlator detector matched to an ideal

point target and the true target shape and trajectory.

The output SNR of the mismatched �lter is
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where w

i

� w

0;0;i

. Note that SNR

ideal

� SNR

opt

� SNR

subopt

. Thus, the SNR loss
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Thus, for a maximum SNR loss of 3 dB,

n

X

i=1

w

i

� n=2 (3:8)

which implies that the assumption of an ideal imaging system is reasonable if on

average half of the target intensity is received by pixels coincident with an ideal point

target on the same trajectory.

In the following, it will be assumed that the system can be approximated as an

ideal imaging system. The algorithm will be applied to a tree-structured candidate

trajectory set, although in general, the algorithm could be applied to any candidate

trajectory set. The choice of a candidate trajectory set is a trade-o� between the loss

in detection performance due to trajectory mismatch and the computational cost of

additional candidate trajectories.

Constructing a Tree-Structured Candidate Trajectory Set

In this section, an algorithm will be described for constructing a complete tree-

structured candidate trajectory set for a point-source target with a known range

of velocities. Typical MTT systems are designed to detect and track a particular

class of real objects. The physical constraints of target dynamics and sensor imaging

characteristics bound the target's perceived velocity on the sensor focal plane. Thus,

it is often reasonable to assume a known target velocity range.

Figure 3.1: Target Velocity Annulus
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As discussed in section 2.2.5, under the assumption of an ideal imaging system, a

dense hypothesis tree can be constructed to evaluate all of the linear, constant velocity

point-source target trajectories in an image sequence volume I[x; y; t]. Consider the

annulus in �gure 3.1 centred on the detector pixel (x

j

; y

k

). A candidate trajectory

could originate from any point (x

0

; y

0

) on the surface of the detector pixel
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; y

0

) 3 (j � 1)�x � x
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� k�y: (3:9)
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in the n'th subsequent frame, is considered in range.

The construction of a candidate trajectory tree can be likened to the construction

of a tree of discrete trajectories spanning the pixels in the image volume enclosed

by the expanding velocity annulus. The problem is to �nd the sequences of pixels

in consecutive image frames which are consistent with a linear, constant velocity

trajectory originating in the root pixel (x

j

; y

k

).

The �rst node of the tree and hence the �rst observation for all candidate trajec-

tories is I[x

j

; y

k

; t]. After the subsequent frame, the candidate trajectory set consists

of the set of two pixel paths from (x

j

; y

k

) to the �rst tier of pixels (x

1;j

; y

1;k

) satisfying

(3.10) for n = 1. Note that each trajectory shares the same �rst observation and that

a new tree node is constructed for each pixel in the second tier.

Subsequent tiers of pixels are added recursively. First, the annulus is expanded

to de�ne the set of potential target pixels in the new tier and a new tree node is

constructed for each pixel in the tier. Then each node is evaluated as a potential

extension of each node from the previous tier.
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The following conditions must be satis�ed for a pixel to be accepted as a valid

extension of a current trajectory:

1. the new pixel must be further from the origin (0; 0) than its parent,

2. the centre-to-centre distance between the pixels must be traversable in a single

frame by a target with a velocity v 3 v

min

� v � v

max

,

3. it must be possible to draw a straight-line through all the pixels in the current

candidate trajectory which intersects the new pixel, and

4. the average velocity of the current trajectory must be within the range of ve-

locities that could cover the old ! new pixel distance in a single frame.

Algorithm 1 (Construction of a K stage candidate trajectory tree)

Let (x

0;j

; y

0;k

) = (x

j

; y

k

) be the �rst tree node in tier 0

For subsequent image frames n := 1 to K-1

For each (x

n;j

; y

n;k

) which satisi�es (3.10)

For each node in tier n-1

Let d = k(x

n;j

� x

n�1;j

; y

n;k

� y

n�1;k

)k

If 0 � v

min

� d � v

max

and d�

p

2 <

1

n�1

k(x

n�1;j

; y

n�1;k

)k < d+

p

2

and if (x

0;j

; y

0;k

); (x

n�1;j

; y

n�1;k

); (x

n;j

; y

n;k

) are colinear

then add a path from the tier n-1 node to a new node at (x

n;j

; y

n;k

) in tier n

The candidate trajectory set is the set of all paths from (x

j

; y

k

) to pixels in tier K-1.

Storing Candidate Trajectories

Since many trajectories share common observations in the �rst few test stages the

candidate trajectories are stored in a hierarchical lookup-table. Each entry in the

table contains:

1. the current test stage,

2. the relative o�set from the root pixel, and

3. a list of pointers to the table entries for valid extensions of the current trajectory

in the next test stage.
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Thus, as the test progresses and the candidate trajectories diverge, the number of

entries in the table for a single test stage increases. Typically, for a known range of

target velocities (speed and direction), the lookup-table for the candidate trajectory

set can be constructed o�-line. Thus, while the MTT system is on-line, the lookup-

table stores all the information necessary to propagate the multistage hypothesis tests

for each candidate trajectory.

As an example of this process, consider the construction of a candidate trajectory

tree for linear, constant velocity targets with a velocity range of 0! 1 pixels/frame.

De�ne the root node as a relative displacement of (0; 0). The velocity annulus for

this problem has an inner radius of 0 and an outer radius of n pixels after n frames

(see �gure 3.2). Each numbered pixel in �gure 2.1 represents a node of the candidate

trajectory hypothesis tree. The �gure illustrates four of the nine possible trajectories

that pass through node 1 and node 2 in the �rst two test stages. The corresponding

lookup-table entries are illustrated in �gure 3.3.

Figure 3.2: Tree-Structured Trajectory Search

Note that the regular tesselation of the image pixels introduces symmetries in

the candidate trajectory tree which can be exploited to reduce the memory storage

requirements of the candidate trajectory lookup-table at a slight cost of increased

overhead in calculating the relative o�sets. For example, the sets of candidate tra-

jectories passing through the corner pixels f(1; 1); (�1;�1); (�1; 1); (1;�1)g in the

second stage have the same relative structure and could be represented by a single
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set of entries in the lookup-table. For the current example, the 9 subtrees covering

the diversity of candidate trajectories in the second test stage could be represented

by lookup-table entries for 3 complete trees (i.e. 1 for 4 corner subtrees, 1 for 4 cross

subtrees and a centre subtree). Relative o�sets for the remaining 6 subtrees could be

computed by interchanging the x and y coordinates or changing the sign of the o�set

coordinates as required.

A full tree to cover this range of velocities for 10 consecutive image frames (a 10-

stage tree) has 194 387 nodes. All 194 387 candidate trajectories share the same �rst

observation, an average of 21 598 share the same second observation and an average

of 3 967 have their �rst three observations in common. Clearly, a decision to accept a

test hypothesis at an early stage greatly reduces the number of candidate trajectories

that need to be evaluated. Thus, the sequential detection approach in [40] will be

employed to evaluate the candidate trajectories.

3.1.2 Track Con�rmation

Given a set of candidate trajectories for target detection, the next task is to test each

trajectory in the set, for the presence of a target. Each test is posed as a binary

hypothesis test (2.14) for the observations y in the candidate trajectory set. It is

assumed in the following that the observations are mutually independent, and iden-

tically distributed. In practice, however, the observations are not always identically

distributed. Targets with similar trajectories or intersecting trajectories may cause

a candidate trajectory to contain a mixture of observations with di�erent probabil-

ity distributions. This leads to an increase in the detection error rate which will be

analyzed in Chapter 4.

Following [40], a sequential decision rule is applied to the binary hypothesis tests

for each candidate trajectory. A sequential decision rule is preferable to a batch or

�xed sample size (FSS) rule because it is data adaptive. A FSS rule makes the best

decision after receiving all n observations while a sequential rule, designed for the

same detection error probabilities, evaluates the observations as they are received,

making a decision as soon as the speci�ed error probabilities can be satis�ed.

It can be shown that, on average, a sequential probability ratio test requires fewer
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samples than a FSS test to meet the same detection performance speci�cations [83,

63]. This is a particularly desirable property for a MTT system. It is clear that rapid

target evaluation is an intrinsically important property of a MTT system; however,

the results of the detection decision can also be used to reduce the computational

load by aiding in track initiation and evaluation decisions (see section 3.3.1).

As in [40], a truncated SPRT will be used to test the candidate trajectories.

The truncated SPRT can be viewed as a trade-o� between an SPRT with constant

thresholds â and

^

b, and an FSS test with �xed threshold � and �xed sample size K.

In particular, a K stage truncated SPRT is a multistage hypothesis test with constant

thresholds a

i

= â and b

i

=

^

b, where the decision rule for stages 1 � i � K � 1 is

i

X

j=1

z

j

8

>

>

>

>

<

>

>

>

>

:

� â ) choose H

1

�

^

b ) choose H

0

2 (

^

b; â) ) take another sample

(3:11)

and the decision rule after K stages is,

K

X

j=1

z

j

8

>

<

>

:

� � ) choose H

1

< � ) choose H

0

(3:12)

for an observed realization z

j

of the random variable

Z

j

= lnL(y

j

): (3:13)

The detection error probabilities for the truncated SPRT are

� = �

SPRT

+ �

FSS

� = �

SPRT

+ �

FSS

(3:14)

where

�

FSS

= c

0

�

�

SPRT

= (1� c

0

)�

�

FSS

= c

1

�

�

SPRT

= (1� c

1

)�

(3:15)

and the weights c

0

and c

1

control the behaviour of the test. If c

0

and c

1

are both

zero then the resulting test is an SPRT, and if c

0

and c

1

are both equal to one then

the resulting test is a FSS test. Thus, a truncated SPRT can be designed to behave
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like an SPRT, with a small average sample size under H

0

or H

1

that is sensitive to

parameter mismatch, or like an FSS test, with a higher average sample size but less

sensitivity to parameter mismatch. It should be noted that a truncated SPRT is not

equivalent to performing an SPRT for the �rst K � 1 stages followed by an optimal

FSS test in the K'th stage. The truncated SPRT assigns a proportion of its accepted

error probabilities to each of its sequential and �xed decisions.

Note that the error probabilities � and � are nominal values used to design the

thresholds

â = ln

h

1�(1�c

1

)�

(1�c

0

)�

i

^

b = ln

h

(1�c

1

)�

1�(1�c

0

)�

i
(3:16)

In practice, the realized detection error probabilities are somewhat less than the

nominal design values [83].

The truncation stage K and the �xed threshold � are chosen to satisfy
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which for Gaussian probability density functions f
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and

� =

p

K[�

1

�
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�
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where � is the standard (normalized) Gaussian distribution function N(0; 1) and �

�1

is its inverse.

Keeping Track of Undecided Trajectories

Due to the sequential nature of the track con�rmation algorithm, detection decisions

may be postponed for several stages. Consequently, the MMHTT algorithm needs a

mechanism for storing the information associated with undecided trajectories. The

data structure used to store this information is depicted in �gure 3.3.

In contrast to the original formulation of the MSHT algorithm [40], which stored

undecided trajectories relative to their root pixel location, the undecided trajectories
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are stored relative to their current image location. This provides a natural clustering

of the undecided trajectories which is valuable in making track initiation and track

maintenance decisions (see sections 3.2.5 and 3.3.1).

Figure 3.3: The Undecided Trajectory Data Structure

Each pixel location has an associated undecided trajectory list, which is a linked

list of candidate trajectory records containing the following �elds:

1. a pointer to the next �eld in the list,

2. the identi�er for the current node in the hypothesis tree,

3. the current value of the likelihood ratio test statistic,

4. a list of the last N observations, and

5. any auxiliary data which may be required for a given hypothesis test

(e.g. current sample mean or variance).

The hypothesis node identi�er is an index to the lookup-table storing the candidate

trajectories. Each entry in the lookup-table contains a pixel o�set from the tra-

jectory's point of origin, the current trajectory test stage and the possible trajectory

extensions in the next stage. By computing the candidate trajectory lookup-table o�-

line, the algorithm can e�ciently propagate candidate trajectory tests by accessing

the lookup-table with its node identi�er index.
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Algorithm 2 (Modi�ed Multistage Hypothesis Test Algorithm)

1. Construct hierarchical lookup-table for candidate trajectory set.

2. Construct hypothesis test threshold lookup-table indexed by test stage.

3. Initialize empty undecided trajectory lists for every image pixel location.

4. For each image in the preprocessed image sequence, update the undecided tra-

jectory lists for each pixel location (x; y), by propagating the current test to each

child of the current node,

(a) Retrieve the relative pixel o�set of each child node from the lookup-table.

(b) Calculate the child node location x

child

= o�set

new

� o�set

old

+ (x; y).

(c) Use I[x

child

] to update the multistage hypothesis test.

(d) If H

0

is accepted, delete the child entry.

(e) If H

1

is accepted, pass the child entry to the tracking algorithm.

(f) Otherwise, add the child entry to the list at x

child

5. Initiate new multistage tests (see section 3.3.1).

3.1.3 Summary

This section has described the target detection phase of the MMHTT algorithm. For

each pixel where a target search is initiated, a set of candidate trajectories is con-

structed to evaluate all the linear, constant velocity trajectories originating in the root

pixel and meeting the speci�ed bounds on target velocity. Each candidate trajectory

is tested for the presence/absence of a target with a truncated Sequential Proba-

bility Ratio Test designed to meet the speci�ed system detection error probabilities

(see Chapter 4). The information associated with undecided trajectories is stored

in a dynamic data structure which is indexed to the current image pixel location of

the candidate trajectory. Thus, the detection phase converts the preprocessed image

signal into a list of con�rmed target trajectory segments with estimates of target

position, velocity and a measure of con�dence in the detection decision. The key
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di�erence between the current approach and Blostein's original implementation of

the MSHT algorithm is the local indexing of the undecided trajectory data structure.

This modi�cation will be exploited in the following section to implement a multiple

hypothesis tracking scheme to manage and extend the con�rmed target trajectories

generated by the target detection phase.

3.2 Target Tracking

The sequential detection procedure presented in the preceding section was originally

proposed as a `track-before-detect' solution to the problem of detecting moving, sub-

pixel targets in a sequence of digital images [40]. However, there was no provision in

the original implementation to extend the detected target trajectories and actively

track the detected targets. In this section, the modi�ed implementation of the MSHT

algorithm, presented in the previous section, will be exploited to ful�ll the track

initiation requirements of a multitarget tracking system.

As discussed in section 2.3, the function of a multitarget tracking system is to

identify individual targets in the sensor's �eld-of-view and to estimate the state of each

target from the detected target observations. This is accomplished by partitioning

the detected target observations into disjoint sets, or target tracks, and estimating the

state of each target from the observations in the target's track. The new algorithm

to be presented in this section extends the target trajectory segments detected by

the MSHT algorithm to form extended target tracks suitable for state estimation and

prediction.

The algorithm, Multiple Multistage Hypothesis Test Tracking, is a `track-oriented'

implementation of multiple hypothesis tracking (see section 2.3.2) that exploits the

MSHT algorithm for track initiation and con�rmation. This approach is conceptually

similar to the Structured Branching implementation of multiple hypothesis tracking

proposed by Blackman et al. [35]. Both algorithms evaluate candidate target tracks

with a sequential probability ratio test. However, the likelihood function employed

by the SB-MHT algorithm (2.46) is derived from a state space model of the target

dynamics while the likelihood function employed by the proposed algorithm (2.15) is
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derived from a model of the sensor signal in the presence/absence of a target.

These two approaches are philosophically di�erent. The state space approach

emphasizes the position of the candidate target observations relative to the position

predicted by the state space model of the target dynamics while the current approach

emphasizes the signal characteristics of the received observations relative to the ex-

pected signal models. These di�erences are motivated by the distinct heritage of the

two approaches. The SB-MHT algorithm is a product of the target tracking com-

munity which emphasizes state space models of the target dynamics and the current

algorithm is an extension of a signal detection algorithm which emphasizes the sen-

sor signal models. In principle, these approaches could be combined by including

the signal information as an additional state and modi�ng the likelihood function

appropriately.

3.2.1 The Detected Target Observations

The target detection algorithm presented in the preceding section makes detection

decisions, for the candidate target trajectories, over multiple image frames. A decision

to accept the target present hypothesis implies an acceptance of the hypothesis that

a target is present in each image observation along the candidate trajectory. Thus,

the output of the detection algorithm consists of sets of detected target observations

along short segments of the detected target's trajectory.

When the k'th multistage hypothesis test terminates, after i frames, the candidate

trajectory data structure contains the position of the target in the current image

frame, the position of the target in the frame in which the test was initiated, the

current test stage and the likelihood ratio test statistic
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For an assumed linear, constant velocity trajectory, the candidate trajectory end-

points and the total length of the test are su�cient to estimate the velocity of the

target and its position in every intermediate test stage (frame). In addition, the test
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statistic L

t

k

provides a measure of the reliability of the target detection decision under

the assumed data hypotheses.

The probability that the target present hypothesis is valid, conditioned on the

image observations Y

t

k

= fy

1

; : : : ; y

i

g, can be expressed in terms of the log-likelihood

ratio test statistic L
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is the log-ratio of the prior probability that the image observations Y

t

k

are or are

not coincident with a target trajectory. This prior probability is a measure of the

expected target density and re
ects the proportion of target to non-target candidate

trajectories.

Since H

1

and H

0

are mutually exclusive hypotheses which partition the sample

space of the image observations Y

t

k

, it follows that
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Thus, the MSHT algorithm detects the target and identi�es its position and velocity

over several image frames, satisfying the classical multitarget tracking functions of

track initiation and track con�rmation. The only remaining task to satisfy the data

association requirements of a complete MTT system is to extend and maintain the

target tracks initiated by the detection algorithm.
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The standard data association algorithms in Chapter 2 were designed to asso-

ciate discrete target detection observations in each image frame. It is unclear how

these algorithms could be applied to associate the sets of observations associated with

detected target trajectory segments over multiple frames of the image sequence. How-

ever, as the following section will discuss, the sequential decision process presented in

the preceding section is compatible with a track-oriented multiple hypothesis tracking

scheme.

3.2.2 Multiple Hypothesis Tracking

As discussed in section 2.3.2, multiple hypothesis tracking algorithms are multiframe

Bayesian probabilistic algorithms which attempt to consider all possible data asso-

ciation hypotheses over a number of frames. Each hypothesis consists of a set of

observation-to-track associations, where each detected target observation is either

1. classi�ed as a false alarm,

2. associated with one of a number of hypothesized target tracks, or

3. classi�ed as a new target.

The multiple hypothesis tracking approach is to maintain a number of probable data

association hypotheses with the foreknowledge that the most probable hypothesis

at any given stage may be the continuation of a less probable hypothesis from a

previous stage. By maintaining and evaluating multiple data association hypotheses

these algorithms have an ability to postpone di�cult association decisions pending

the receipt of new observations. The ability to use later observations to resolve prior

association decisions greatly reduces the number of association errors, and results in

a substantial performance gain relative to single frame algorithms.

There are two major components to a multiple hypothesis tracking algorithm. The

�rst component is an e�cient technique for generating and managing the multitude

of association hypotheses and the second component is a technique for evaluating

competing hypotheses. The discussion of hypothesis generation and management

will be deferred until section 3.2.4 while some of the issues associated with hypothesis

evaluation are explored.
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In a standard implementation of multiple hypothesis tracking, competing hypothe-

ses are evaluated by calculating the a posteriori probability, Pr(H

l

j D

k

), (see (2.40))

that each hypothesis H

l

is valid, conditioned on the detected target observations. If

the observations are independent, then this probability can be evaluated recursively

in terms of the most recent observation update. Note that this recursive relationship

requires an evaluation of all the association hypotheses for the most recent observation

update (2.42).

In practice, many if not most of these hypotheses are highly improbable. Thus,

as the number of detected target observations increases, the cost of evaluating a

large number of improbable hypotheses grows rapidly and this approach becomes

extremely ine�cient in its use of computational resources. Consequently, Blackman et

al. proposed a `track-oriented' implementation of multiple hypothesis tracking which

replaces the evaluation of global hypotheses (2.40) with an evaluation of individual

track hypotheses (2.43) from which the Pr(H

l

j D

k

) may be computed [35].

The Structured Branching implementation of multiple hypothesis tracking, eval-

uates each target track with a sequential probability ratio test designed to test the

observations against the binary hypotheses

� H

1

: target present, Y

i

� f(y

i

j H

1

) and

� H

0

: target absent, Y

i

� f(y

i

j H

0

) (all observations are false alarms).

This is conceptually identical to the evaluation of candidate trajectories by the MSHT

algorithm. However, the SB-MHT algorithm evaluates each candidate trajectory with

respect to a probabilistic model of the target's dynamics (2.46).

Those tracks which are accepted by the SPRT as target tracks are propagated and

used to generate global hypotheses. Each global hypothesis consists of a set of track

hypotheses, where a given global hypothesis is valid, if and only if all of its constituent

track hypotheses are also valid and the remaining detected target observations are

false alarms. Thus, global hypotheses can be evaluated indirectly by evaluating the

validity of their component track hypotheses.

Since each track is a member of more than one global hypothesis, there are sub-

stantially fewer tracks than global hypotheses. Thus, by eliminating improbable
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tracks prior to the evaluation of global association hypotheses the computational

cost of maintaining multiple hypotheses is substantially reduced. In the following,

a similar conceptual structure will be exploited to extend the MSHT algorithm in a

multiple hypothesis tracking framework.

3.2.3 Track Hypotheses

In the following, the approach used to develop the SB-MHT algorithm, will be used

to develop a `track-oriented' implementation of mulitple hypothesis tracking based on

the MSHT detection algorithm. As in [35], the validity of each candidate trajectory

t

k

is measured by a likelihood ratio test statistic, L

t

k

(recall (3.20)), in this case

the likelihood statistic used in the sequential target detection decision. Thus, the

likelihood of each candidate trajectory is initially evaluated by the MSHT algorithm.

If the detection test terminates and the target absent hypothesis H

0

is accepted,

then the candidate trajectory is removed from further consideration. If however, the

detection test terminates and the target present hypothesis H

1

is accepted, an explicit

means to extend and track the detected target trajectory is required.

A straightforward approach would be to extend the current candidate trajectory

along its current linear, constant velocity trajectory. However, it was initially assumed

that the target trajectory could be approximated by a linear, constant velocity tra-

jectory over a short time interval (see section 3.1.1). In practice, the extended target

trajectory has a �nite curvature and the target dynamics may vary if the target

manoeuvres. Thus, a target tracking algorithm must be able to follow the target tra-

jectory and detect target manoeuvres over an extended period of time, relying only

on local linearity of the target trajectory.

The solution proposed herein is to reinitiate a candidate trajectory search in ev-

ery pixel where the multistage hypothesis test terminates and a target is declared

present. Although the initial candidate trajectory search was constrained only by the

expected range of target velocities (speed and direction), the search for the extension

of a detected target trajectory can be further constrained by a maximum allowable

change in target velocity, including target manoeuvers. This additional constraint

exploits the smoothness of the target trajectory and prior knowledge of the target's
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manoeuvring abilities to reduce the e�ective trajectory search space without sacri-

�cing tracking performance. Thus, the scope of the candidate trajectory search for

a con�rmed target trajectory is constrained around an estimate of the nominal tar-

get velocity implied by the initial detected trajectory segment. In principle, this

approach can be re�ned by appealing to the error covariance estimate of the target

state estimator to modulate the scope of the constrained search.

The search for extensions of a con�rmed candidate trajectory consists of an eval-

uation of the candidate trajectories in the candidate trajectory set coincident with

the pixel in which the candidate trajectory was con�rmed. However, as will become

evident in the following discussion, for the purposes of track hypothesis evaluation

it is desirable to maintain the statistical independence of the candidate trajectory

segments which constitute a hypothesized target track. Thus, hypothesized target

tracks consisting of disjoint candidate trajectory segments are formed by evaluating,

as extensions of the current track, trajectories formed by ignoring the root pixel of

the candidate trajectories in the candidate trajectory set which satisfy the constraints

on the maximum allowable change in target velocity.

With the proposed approach, candidate trajectories can be extended inde�nitely

by exploiting multiple multistage hypothesis tests to detect short, linear segments

of the detected target's trajectory. As the candidate trajectories are propagated,

multiple track hypotheses are formed to describe the multitude of ways in which the

detected trajectory segments could be associated to form candidate target tracks.

Thus, this new approach is termed Multiple Multistage Hypothesis Test Tracking

(MMHTT).

De�ning the observations along the k

th

hypothesized target track T

k

as the con-

catenation of the observations of its constituent candidate trajectory segments

Y

T

k

=

[

t

i

2T

k

Y
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(3:24)
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Y
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k
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the probability that T

k

represents a true target track can be expressed as

Pr(T

k

) = Pr(

\

t2T

k

Y

t

� f

Y
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68



Expressing Y

T

k

as an ordered set of n candidate trajectory segments Y

t

i

,

Y

T

k

= fY

t

1

; : : :Y

t

n

g (3:27)

one can evaluate the probability of concurrent, colinear track hypotheses

fT

j

j Y

T

j

� Y

T

k

g (3:28)

as
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A local evaluation of the probability that T

k

is valid, conditioned on the detected

target observations, Y

T

k

, can then be evaluated by accumulating the test statistics

L

t

i

of its constitutent trajectory segments via

L

T

k

=

X

t

i

2T

k

L

t

i

: (3:30)

Using a similar argument to (3.21),
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where

C

T

j

= ln

"

Pr(T

j

)

Pr(T

;

)

#

(3:32)

is the log-ratio of the prior probability that the image observations Y

T

j

are or are

not coincident with a target trajectory. The priors for the track hypotheses can, for

example, be derived from a statistical model of the expected track length [7]. It is
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assumed that the observations Y

T

k

are described by one of the mutually exclusive

track hypotheses T

j

or T

;

. Therefore, it follows that

Pr(T

k

jY

T

k

) =

exp(L

T

k
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Note that the ability to express the track hypothesis score L

T

k

as the sum of the

scores of its constituent candidate trajectory segments is critically dependent on the

statistical independence of the candidate trajectories. Since the image observations

are assumed to be mutually independent, de�ning the hypothesized target track Y

T

k

as a set of disjoint but connected sets of image observations Y

t

i

is su�cient to enable

Pr(Y

T

k

j T

j

) to be expressed as

Pr(Y

T

k

j T

k

) =

n

Y

i=1

Pr(Y

t

i

j T

k

): (3:34)

Hence, the image observations for candidate extensions of detected target trajectory

segments do not include the image observation at the root of the candidate trajectory

set.

Summarizing, the MMHTT algorithm hypothesizes candidate target tracks from

the trajectory segments detected by the MSHT algorithm. Each target track consists

of a unique sequence of candidate trajectory segments linking test initiation and

con�rmation points in multiple image frames. The set of all target tracks represents

an inconsistent set of local observation-to-track associations in the sense that each

track is a local association of observations to a particular candidate target track,

but certain pairs of tracks represent mutually exclusive hypotheses. Associated with

each track is a con�dence measure or track score L

T

k

and a set of detected target

observations suitable for target state estimation.

3.2.4 Global Hypotheses

For typical multistage hypothesis tests, there is a small but �nite probability that a

single multistage test will accept the target present hypothesis in the absence of a

target. However, in dense, multitarget environments, false target trajectories com-

monly arise as the result of candidate trajectories stealing target observations from
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several di�erent true target trajectories. Since a target is present in each image obser-

vation, the probability that such a track is valid will be high based on an evaluation

of the track hypotheses. Thus, an evaluation of the global data association problem

is required to correctly resolve individual target tracks in a multitarget scenario.

Global hypotheses are formed from sets of compatible track hypotheses. A com-

mon assumption is that no more than one target may be present in a single image

observation. Thus, two tracks are considered compatible if they have no observations

in common. If more than one target is present in a single image observation or if a

target can split into multiple targets, then this assumption is not well-founded and

group tracking techniques should be applied (see, for example, Blackman [7]).

It will also be assumed that the candidate trajectories in a new trajectory search

represent new target hypotheses while the candidate trajectories in a reinitiated search

represent extensions of old target hypotheses. Note that when a candidate trajectory

is accepted as the extension of an existing track, a new track hypothesis is formed

which has the the root pixel of the parent and the combined observations of the

original track and its accepted extension. The original track hypothesis is maintained

to generate alternate extensions and to represent the hypothesis that the original

track terminates (loss of track).

With standard single frame association algorithms, the most probable global hy-

pothesis would be accepted after every frame and alternate hypotheses deleted. How-

ever, the multiple hypothesis tracking approach adopted herein allows the use of

future observations to resolve prior association decisions. The resultant reduction in

correspondence errors is well documented [7, 35] but the necessity to maintain and

evaluate multiple alternate hypotheses is often criticized for its computational cost.

As discussed previously, the evaluation of the probability that a given global as-

sociation hypothesis is valid requires an evaluation of all related hypotheses. The

number of hypotheses to be evaluated is greatly reduced by using the MSHT al-

gorithm to evaluate and con�rm track hypotheses prior to the generation of global

hypotheses. However, a further reduction in the number of hypotheses to be evalu-

ated can be achieved by clustering the track hypotheses into sets of non-interacting

(independent) track hypotheses and evaluating the global hypotheses for each cluster
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independently. This approach was �rst proposed by Reid [11] and is commonly used

by MHT algorithms to divide the global association problem into smaller independent

problems [7, 35].

Clustering Hypotheses

A track hypothesis cluster is de�ned as a minimal set of interacting tracks. Incompat-

ible tracks are considered to interact directly but interaction is de�ned as a transitive

operation, so if track T

a

interacts with track T

b

, and track T

b

interacts with track

T

c

, then track T

a

interacts with track T

c

. Thus, Tracks T

a

and T

c

are considered to

interact indirectly and all three tracks T

a

, T

b

, and T

c

are members of the same cluster.

Global hypotheses can then be formed from sets of compatible tracks within a

cluster. Each set of tracks represents one hypothesis regarding the true origin of the

observations within the cluster. The total number of hypotheses that can be generated

from a single cluster depends on the interactions between the track hypotheses (direct

or indirect) but increases rapidly with the number of tracks in the cluster. Thus, from

a computational viewpoint, it is desirable to minimize the size of individual clusters.

Evaluating Global Hypotheses

Following the approach in [35], the probability that a given hypothesis, H

j

, is valid

can be evaluated as a simple function of the scores of its constituent track hypotheses.
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De�ne the observations in the k
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track hypothesis cluster C
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If there are a total of J mutually exclusive global hypotheses H

j

and the null hypoth-

esis H

�

that partition sample space of the cluster image observations, i.e.

J

X

j=1

Pr(H

j

j D

k

) + Pr(H

�

j D

k

) = 1 (3:38)

then the probability that H

j

is valid, conditioned on the image observations in the

k

th

cluster is given by:
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As in (3.21) and (3.31), the above expression can be written as
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where each hypothesis H

j

consists of a set of independent track hypotheses T

i

. It

follows that
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3.2.5 Hypothesis Generation

The number of hypotheses generated for a single target can be easily managed. How-

ever, when the scope of the problem is expanded to include multiple targets, the

number of hypotheses to be managed and evaluated grows rapidly. Thus, an essential

component of any multiple hypothesis tracking algorithm is an e�cient technique for

managing multiple track and global hypotheses. In the following, the generation of
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track and global hypotheses for the MMHTT algorithm will be outlined and then

illustrated with a simple example.

The MMHTT algorithm can be viewed as a three stage processing hierarchy.

At the lowest level, multiple multistage hypothesis tests are used to evaluate can-

didate trajectory segments. When a multistage hypothesis test terminates with an

acceptance of the target present hypothesis H

1

, the candidate trajectory segment is

con�rmed and a search for an extension of the con�rmed trajectory is initiated in

its nominal direction. This stage of the processing hierarchy, designed to meet the

signal detection requirements of the MTT system (recall �gure 1.2), operates on the

incoming preprocessed image data at the image sensor frame rate and outputs short

con�rmed target trajectory segments.

Algorithm 3 (Constructing Track Hypotheses)

Given a con�rmed candidate trajectory t

k

with observations Y

t

k

= fy

k;1

; : : : ; y

k;n

g,

Let the candidate trajectory set origin be (x

0

; y

0

)

t

k

,

For each target track T whose most recent observation update was n frames ago,

Let (x

t

; y

t

)

T

be the most recent target position of target track T .

If (x

0

; y

0

)

t

k

= (x

t

; y

t

)

T

and direction(t

k

) � direction(T );

Create a new track hypothesis T

?

with observations Y

T?

= fY

T

;Y

t

k

g.

Evaluate track hypothesis clusters.

Create a new track hypothesis

^

T with observations Y

^

T

= Y

t

k

.

Evaluate track hypothesis clusters.

In the intermediate processing stage, every trajectory segment detected by the

MSHT algorithm is associated with one of the following three hypotheses

1. the trajectory segment is a false alarm,

2. the trajectory segment is an extension of track hypothesis T , or

3. the trajectory segment is a new target detection.

A new track hypothesis is then generated for each track hypothesis for which the

candidate trajectory segment is a valid extension. A new track hypothesis is also
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generated to represent the possibility that the current trajectory segment is a new

target observation. This stage of the processing hierarchy generates the raw target

tracks required for subsequent state estimation. Note that the data rate at this stage

is substantially less than that of its predecessor.

At this point the integrity of each track hypothesis cluster is evaluated. If track

hypotheses in di�erent clusters interact, then the clusters are merged.

Algorithm 4 (Evaluate track hypothesis clusters: Cluster Merge)

Let T

N

be the new track hypothesis.

Set 
ag.

For each track hypothesis cluster C

i

,

For each track hypothesis T 2 C

i

,

If Y

T

N

T

Y

T

6= ;,

If 
ag is set,

Set N = i.

Clear 
ag.

Add track hypothesis T

N

to cluster C

i

.

Else,

Merge clusters C

i

and C

N

.

If 
ag is set,

Create a new track hypothesis cluster C

i+1

.

Add track hypothesis T

N

to cluster C

i+1

.

Finally, at the highest level, global hypotheses are generated for each cluster.

A global hypothesis is generated for each valid combination of compatible track hy-

potheses where each global hypothesis represents a di�erent hypothesis concerning the

origin of the detected target observations in the track hypothesis cluster. This stage

of the processing hierarchy serves a supervisory role evaluating the track hypothe-

ses generated by the intermedidate stage with respect to global tracking constraints.

As will be discussed in section 3.3, this stage also ful�lls a role in the reduction of

computation.
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Algorithm 5 (Global hypothesis generation)

For each T 2 C,

For each global hypothesis H in cluster C,

Set 
ag.

For each track hypothesis T

H

2 H, while 
ag is set,

If Y

T

T

Y

T

H

6= ;, clear 
ag.

If 
ag is set,

Create new global hypothesis with track hypotheses fT

i

j T

i

2 Hg; T .

Create new global hypothesis with track hypothesis T .

In the following, the preceding procedures for generating track and global hy-

potheses will be illustrated with a simple example for two targets with intersecting

trajectories.

An Example

Consider the tracking scenario illustrated in �gure 3.4. The two targets are following

intersecting, linear, constant velocity trajectories. To limit the number of hypotheses

in this example, only the �rst new trajectory search, initiated for each target, will

be considered. Note that the frame by frame positions of each target are listed in

Table 3.1.

The results of a hypothetical 4-stage MSHT designed to detect the two targets are

summarized in Table 3.2. Note that Target #1 is initially detected in Frame 1, and

Target #2 is initially detected in Frame 2. In both cases, an omnidirectional search

of the candidate target trajectories in the candidate trajectory set is inititated at the

pixel in which the target was �rst detected.

In Frame 4, the candidate trajectory from (0,0) in Frame 1 to (3,3) in Frame 4 is

con�rmed and a search for an extension of this trajectory is initiated in a nominally

northeast direction. Since this is the �rst candidate trajectory to be con�rmed, it

is not necessary to evaluate this candidate trajectory as a potential update for an

existing track hypothesis. Instead, a new track hypothesis cluster C1 is created and

the candidate trajectory is stored as track hypothesis T1 in cluster C1.
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Figure 3.4: Example Target Trajectories

Target #1 Target #2

Frame Pixel Frame Pixel

1 (0,0)

2 (1,1) 2 (8,1)

3 (2,2) 3 (7,2)

4 (3,3) 4 (6,3)

5 (4,4) 5 (5,4)

6 (5,5) 6 (4,5)

7 (6,6) 7 (3,6)

8 (7,7) 8 (2,7)

9 (8,8) 9 (1,8)

10 (9,9) 10 (0,9)

Table 3.1: Frame by Frame Target Positions for Tracking Example
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Results of Multiple Multistage Hypothesis Tests

Frame Action Pixel Nominal Direction Target

1 New Test Initiated (0,0) 
 1

2 New Test Initiated (8,1) 
 2

4 Target Con�rmed (3,3) 1

Test Re-initiated (3,3) % 1

Target Con�rmed (6,3) 2

Test Re-initiated (6,3) - 2

6 Target Con�rmed (4,5) 2

Test Re-initiated (4,5) - 2

Target Con�rmed (5,5) 1

Test Re-initiated (5,5) % 1

Target Con�rmed (5,5) 2 (FT)

Test Re-initiated (5,5) - 2

7 Target Con�rmed (4,6) 2 (FT)

Test Re-initiated (4,6) - 2 (FT)

Target Con�rmed (5,6) 1 (FT)

Test Re-initiated (5,6) % 1 (FT)

8 Target Con�rmed (7,7) 1

Test Re-Initiated (7,7) % 1

10 Target Con�rmed (0,9) 2

Target Con�rmed (9,9) 1

Legend: 
 - 360

�

search, FT - false target

Table 3.2: Detected Trajectory Segments for Tracking Example 1
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The candidate trajectory from (8,1) in Frame 2 to (6,3) in Frame 4 is also con-

�rmed in Frame 4, and a search for an extension of this trajectory is initiated in

a nominally northwest direction. Recall that the data structure for each candidate

trajectory contains the node of the candidate trajectory tree in which the trajectory

was con�rmed. This node is an index to the candidate trajectory tree data structure

which contains the relative o�set between the initiation of the multistage hypoth-

esis test and the location of the node in which it was con�rmed. Thus, it can be

determined that the current candidate trajectory was initiated at (8,1) in Frame 2.

Since there are no current track hypotheses whose most recent observations are

from Frame 2, a single track hypothesis is constructed to represent this candidate

trajectory. This track hypothesis is then compared to the only existing track hy-

pothesis. The new track hypothesis and track hypothesis T1 do not have any image

observations in common and hence, do not interact. Therefore, a new track hypoth-

esis cluster is created and the new track hypothesis is stored as track hypothesis T1

in C2.

Thus after processing Frame 4, there are two track hypothesis clusters, C1 and

C2, with one track hypothesis each. Consequently, each cluster has only one global

hypothesis consisting solely of the single track hypothesis. These two clusters and

their hypotheses accurately describe the two target trajectories from Frame 1 to Frame

4 (see Table 3.3).

Frame 4

Target Track Track Global

Cluster 1 2 3 4 Hypothesis Hypothesis

1 (0,0) (1,1) (2,2) (3,3) T1 H1

2 (8,1) (7,2) (6,3) T1 H1

Table 3.3: Track Hypotheses after Frame 4

In Frame 6, the candidate trajectory from (5,4) in Frame 5 to (4,5) in Frame

6 is con�rmed as a target trajectory segment. Since this candidate trajectory was

initiated at (6,3) in Frame 4, both existing track hypotheses, having received their

last observation update in Frame 4, are candidates to be updated with the current
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trajectory. However, only track hypothesis T1 in cluster C2 terminates at (6,3) in

Frame 4, the origin of the current candidate trajectory, and has a direction compatible

with the direction of the current candidate trajectory. Thus, track hypothesis T1

in cluster C1 is removed from consideration and a new track hypothesis is created

by concatenating the observations of track hypothesis T1 in cluster C2 with the

observations of the current candidate trajectory.

This new track hypothesis is then compared with the track hypotheses in the

existing track hypothesis clusters. The new track hypothesis does not interact with

track hypothesis T1 in C1, but it does interact with track hypothesis T1 in C2.

Therefore, the new track hypothesis is stored as track hypothesis T2 in C2.

A new track hypothesis is also created to represent the hypothesis that the current

candidate trajectory is an observation of a new target. This track hypothesis only

contains the observations of the current candidate trajectory and is thus a subset of

T2 in C2. The new track hypothesis interacts with both T1 and T2 in C2 but does

not interact with T1 in C1 and is thus stored as track hypothesis T3 in C2.

In a similar fashion, the candidate trajectory from (4,4) in Frame 5 to (5,5) in

Frame 6 is con�rmed as a target trajectory segment originating at (3,3) in Frame

4. This candidate trajectory yields track hypotheses T2 and T3 in cluster C1 (see

Table 3.4). At this point both target trajectories have been updated to Frame 6 with

the generation of appropriate track hypotheses.

However, a candidate trajectory from (5,4) in Frame 5 to (5,5) in Frame 6 is

also con�rmed as a target trajectory segment in Frame 6. This trajectory segment

originates at (6,3) in Frame 4 and consists of a single observation of Target #2 at

(5,4) in Frame 5 and a single observation of Target #1 at (5,5) in Frame 6. Although

this is a false target trajectory it consists of a sequence of target observations and

hence is accepted as a true target trajectory at the track level.

First, the candidate trajectory is considered as an extension of the two track

hypotheses which terminate in Frame 4. Only track hypothesis T2 in C2 terminates

at (6,3) in Frame 4 and has a compatible target direction. Thus, only one track

hypothesis is generated by extending track hypothesis T2 in C2 with the false target

trajectory segment.
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Frame 6

Target Track Track Global

Cluster 1 2 3 4 5 6 Hypothesis Hypotheses

1 (0,0) (1,1) (2,2) (3,3) T1 H1, H5

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) T2 H2

(3,3) (4,4) (5,5) T3 H3

(8,1) (7,2) (6,3) (5,4) (5,5) T4 H4, H5

2 (8,1) (7,2) (6,3) T1 H1

(8,1) (7,2) (6,3) (5,4) (4,5) T2 H2

(6,3) (5,4) (4,5) T3 H3

Table 3.4: Tracking Hypotheses before Cluster Merge in Frame 6.
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This new track hypothesis is then compared with the track hypotheses in the ex-

isting clusters. First, the new track hypothesis is compared with the track hypotheses

in C1. The new track hypothesis shares the observation of Target #1 in Frame 6 with

track hypotheses T2 and T3 in C1. Therefore, the new track hypothesis is stored as

track hypothesis T4 in C1.

The new track hypothesis is then compared with the track hypotheses in C2. Note

that the new track hypothesis shares the observation of Target #2 in Frame 5 with

track hypotheses T2 and T3 in C2. Thus, clusters C1 and C2 are merged. The

state of the target tracking hypotheses in Frame 6 before the clusters are merged is

summarized in Table 3.4.

Merging the track hypotheses is a simple matter of adding the track hypotheses

from C2 to C1 and renumbering the track hypotheses. In practice, the track hy-

potheses in each cluster are stored in linked lists (see section 3.4) and the merging of

two clusters is a simple matter of changing two data structure pointers. The track

hypotheses after the clusters are merged are listed in Table 3.5.

Frame 6

Target Track Track Hypothesis

Cluster 1 2 3 4 5 6

1 (0,0) (1,1) (2,2) (3,3) T1

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) T2

(3,3) (4,4) (5,5) T3

(8,1) (7,2) (6,3) (5,4) (5,5) T4

(8,1) (7,2) (6,3) T5

(8,1) (7,2) (6,3) (5,4) (4,5) T6

(6,3) (5,4) (4,5) T7

� (6,3) (5,4) (5,5) T8

Table 3.5: Track Hypotheses after Cluster Merge in Frame 6 (� and after Frame 6).

Returning to consideration of the current con�rmed candidate trajectory, a new

track hypothesis is generated to represent the hypothesis that the current trajectory

is an observation of a new target. This track hypothesis consists solely of the image
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observations from (6,3) in Frame 4 to (5,5) in Frame 6. Since this track hypothesis

shares observations of Target #2 with track hypotheses T4; T5; T6 and T7; and an

observation of Target #1 with track hypotheses T2; T3 and T4, it is only compatible

with track hypothesis T1. Hence, this track hypothesis is added to the new merged

cluster as track hypothesis T8.

A total of three candidate target trajectories are accepted in Frame 6. Two

of these are valid extensions of the detected trajectories for Target #1 and Target

#2, but the third trajectory is a false trajectory whose �nal observation is stolen

from Target #1. The observations along this trajectory satisfy the target present

hypothesis of the multistage hypothesis test, but lead to the acceptance of a False

Track (FT) hypothesis. This track is proposed as a candidate trajectory extension for

T1 in C2, generating track hypothesis T4 as a hypothesized extension of T5 and track

hypothesis T8 as a newly detected target (see Table 3.5). As discussed previously,

each detected trajectory segment can be classi�ed as either a false alarm, a new

target or a new observation of a current target. For example, classifying the detected

trajectory segment f(3; 3); (4; 4); (5; 5)g

1. as a false alarm suggests the termination of track hypothesis T1,

2. as a continuation of track hypothesis T1 generates hypothesis T2,

3. and as a new target generates track hypothesis T3.

After processing Frame 6, the single track hypothesis cluster contains 8 track

hypotheses. If desired, global hypotheses for the observations in this cluster could

be generated and evaluated. The resulting set of global hypotheses is enumerated in

Table 3.6.

In Frame 7, two candidate trajectory segments are con�rmed. Both segments are

the result of interactions between Target #1 and Target #2 that generate false track

hypotheses. As an illustration of the rapid growth in the number of hypotheses to

be evaluated and maintained, the track hypotheses after Frame 7 are summarized in

Table 3.7 and the corresponding global hypotheses are enumerated in Table 3.8.
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Frame 6

Global Hypothesis Track Hypotheses

H1 T1

H2 T2

H3 T3

H4 T4

H5 T1, T4

H6 T5

H7 T6

H8 T7

H9 T1, T5

H10 T1, T6

H11 T1, T7

H12 T2, T5

H13 T2, T6

H14 T2, T7

H15 T3, T5

H16 T3, T6

H17 T3, T7

H18 T8

H19 T1, T8

Table 3.6: Global Track Hypotheses after Frame 6
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Frame 7

Target Track Track

Cluster 1 2 3 4 5 6 7 Hypothesis

1 (0,0) (1,1) (2,2) (3,3) T1

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) T2

(3,3) (4,4) (5,5) T3

(8,1) (7,2) (6,3) (5,4) (5,5) T4

(8,1) (7,2) (6,3) T5

(8,1) (7,2) (6,3) (5,4) (4,5) T6

(6,3) (5,4) (4,5) T7

(6,3) (5,4) (5,5) T8

(8,1) (7,2) (6,3) (5,4) (5,5) (4,6) T9

(6,3) (5,4) (5,5) (4,6) T10

(5,5) (4,6) T11

(0,0) (1,1) (2,2) (3,3) (4,4) (4,5) (5,6) T12

(3,3) (4,4) (4,5) (5,6) T13

Table 3.7: Track Hypotheses after Frame 7
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Frame 7

Global Hypothesis Track Hypotheses Global Hypothesis Track Hypotheses

H1 T1 H25 T1,T11

H2 T2 H26 T5,T11

H3 T3 H27 T6, T11

H4 T4 H28 T7,T11

H5 T1, T4 H29 T1,T5,T11

H6 T5 H30 T1,T6,T11

H7 T6 H31 T1,T7,T11

H8 T7 H32 T12

H9 T1,T5 H33 T4,T12

H10 T1,T6 H34 T5,T12

H11 T1,T7 H35 T8,T12

H12 T2,T5 H36 T9,T12

H13 T2,T6 H37 T10,T12

H14 T2,T7 H38 T11, T12

H15 T3,T5 H39 T5,T11,T12

H16 T3,T6 H40 T13

H17 T3,T7 H41 T4, T13

H18 T8 H42 T5,T13

H19 T1,T8 H43 T8,T13

H20 T9 H44 T9,T13

H21 T1,T9 H45 T10,T13

H22 T10 H46 T11,T13

H23 T1,T10 H47 T5,T11,T13

H24 T11

Table 3.8: Global Track Hypotheses after Frame 7
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Summary

The preceding example has illustrated the process of track and global hypothesis gen-

eration for a simple multitarget tracking scenario. Even for the simple case presented,

the total number of hypotheses increases rapidly. In general, it is computationally

infeasible to maintain all possible hypotheses. In fact, the number of hypotheses can

grow exponentially [7]. Thus, in practice, a number of most probable hypotheses are

maintained.

In general, the number of multiple hypotheses maintained is dependent on the

computational resources of the MTT system available for target tracking. A number

of strategies can be employed to reduce the computational requirements of the MHT

approach by selectively pruning and combining hypotheses. By selectively maintain-

ing the most probable hypotheses, a MTT system can balance the need for compu-

tational e�ciency with the improved error performance provided by maintaining and

evaluating additional hypotheses. Strategies for reducing the computational cost of

the MHT approach while minimizing the resulting performance loss are discussed in

the following section.

3.3 Computational Re�nements

In the following, various strategies for reducing the computational cost of the MMHTT

algorithm will be discussed. The section begins with the development of a new test

initiation procedure for the MMHTT algorithm which exploits knowledge of the cur-

rent track hypotheses to suppress new MSHTs for targets currently being tracked.

Strategies for hypothesis pruning and combining, commonly applied to MHT algo-

rithms, are then discussed and applied to the simple tracking example introduced in

the previous section. Acknowledging that it is computationally impractical to main-

tain and evaluate all possible data association hypotheses, these strategies attempt

to minimize the performance loss associated with an evaluation of an incomplete

set of hypotheses by selectively generating and maintaining a set of most probable

hypotheses.
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3.3.1 Track Initiation

An e�ective means for reducing the computational cost of the MMHTT algorithm is

to reduce the number of multistage hypothesis tests initiated to evaluate candidate

trajectory segments in each image frame. Reducing the number of new candidate

trajectory searches leads to a reduction in the number of con�rmed target tracks

and consequently, the number of track and global hypotheses to be generated and

evaluated. The challenge is to selectively reduce the number of new target trajectory

searches in a manner which minimizes the resulting loss in detection and tracking

performance.

In a typical MTT system, track initiation is the most resource intensive process.

The goal of the track initiation stage is to reduce the demand for computational

resources without compromising the overall system detection performance. Typically,

the track initiation functions are served by a dedicated signal processor which can

meet the high data rate of the incoming image signal, producing a relatively small

set of potential targets/image frame for evaluation by a higher level, general purpose

track hypothesis processor. The signal processor must detect enough true targets

to satisfy the system's probability of detection requirements and yet reject su�cient

false targets to avoid saturating the post-processor and to limit the overall system

false alarm rate to an acceptable level.

Three strategies are proposed to accomplish this task:

1. Evaluation of current candidate trajectory hypotheses.

2. Rate-constrained target detection.

3. Employment of an auxiliary region of interest (ROI) process.

Evaluation of Current Candidate Trajectory Hypotheses

In the original implementation of the MSHT algorithm, the log-likelihood ratio func-

tion L(y) was evaluated for the observed image intensity y of every pixel in every

image frame [40]. If the test statistic L(y) for a given pixel exceeded the upper test

threshold â, then a target was immediately declared present. If the test statistic L(y)

failed to exceed the lower test threshold

^

b, then the pixel was removed from further
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consideration. However, if the test statistic was bounded by the �rst stage MSHT

test thresholds, then an omnidirectional evaluation of the trajectories in the candidate

trajectory set for that pixel was initiated.

Although this approach ensures that all candidate trajectories are evaluated, it

leads to an evaluation of a signi�cant number of redundant candidate trajectories. In

particular, for a typical MSHT, with a high probability of detection, this procedure

results in multiple detected target trajectories for a single target track, many of which

di�er by a single observation. Although in the original MSHT implementation, these

redundant trajectories provided a rough tracking capability, through repeated target

detection, the introduction of the reinitiation of detected target trajectories in the

MMHTT algorithm restricts the need for track initiation to the detection of new

targets.

It is worth noting that for typical MSHT test designs, the expected test length

and hence the computational cost of MSHTs evaluating candidate trajectories with

target observations is signi�cantly greater than that of MSHTs evaluating candidate

trajectories without target observations (see Chapter 4). In addition, the probability

of accepting a false candidate target trajectory is signi�cantly increased if its �rst

observation contains a target (see Chapter 4). Thus, by suppressing the initiation of

new candidate trajectory searches for pixels currently hypothesized as members of a

target trajectory, the computational cost of the track initiation stage can be reduced

with an accompanying reduction in the number of false alarms.

Consequently, the initiation of new trajectory searches in the MMHTT algorithm

is inhibited at image pixels which coincide with the location of current undecided

trajectories. New trajectories are only initiated when there is insu�cient evidence

to support the hypothesis that the current pixel, I[x; t], is an observation of an old

target in the current undecided trajectory list. The new target/old target decision

is formulated as a simple Bayesian hypothesis testing problem conditioned on the

observations of all the candidate trajectories in the pixel's undecided trajectory list.

De�ning the set of candidate trajectories in the current pixel's undecided trajec-

tory list as


 = ft

k

j y

k;t

= I[x; t]g (3:42)
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there are two possible hypotheses regarding the observation I[x; t]:

H

NT

: I[x; t] is an observation from a new target

H

OT

: I[x; t] is an observation from an old target

(3:43)

The new target hypothesis, H

NT

, implies that all the observations along the trajecto-

ries in the current pixel's undecided trajectory list are distributed as

Y � f

Y

(y j � 2 �

H

0

); 8y 2 t

i

2 
 (3:44)

while the old target hypothesis, H

OT

, implies that the current observation, I[x; t], is

an observation of a target which is also present in one of the candidate trajectories

in the current undecided trajectory list.

Pr(H
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) = Pr(

\

j

H
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j

) (3:45)

where
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Recall that no more than one target is assumed present in any image observation.

Hence, acceptance of each of the candidate trajectories represents a set of mutually

exclusive hypotheses.

De�ning the image observations along the candidate trajectories in the undecided

trajectory list as

Y




[

t

i

2


Y

t

i

(3:47)

the Bayes decision rule for (3.43), with a uniform cost assignment [63], accepts H

NT

if
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and assuming that

Pr(H

OT

i

) = Pr(H

OT

j

); 8t

i
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2 
 (3:49)

the new target decision rule accepts H

NT

if

X
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i
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j H
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(3:50)
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which can be expressed as

X

t

i

exp(L

t

i

) � �

NT

(3:51)

where �

NT

is the ratio of the prior probability that all the observations in Y




are

target free to the prior probability that one of the candidate trajectories coincides

with a true target trajectory. This decision rule minimizes the probability of error and

maximizes the a posteriori probability that the selected hypothesis is correct given

Y




.

In the absence of domain dependent information regarding the expected tar-

get density, which could be used to estimate the prior probabilities Pr(H

NT

) and

Pr(H

OT

i

), we assume that Pr(H

NT

) = Pr(H

OT

i

) and thus �

NT

= 1. This is a maxi-

mum likelihood approach. Alternatively, an estimate for �

NT

can be made by mon-

itoring the current ratio of new targets to old targets, as determined by the most

probable global hypotheses.

Rate-Constrained Detection

In applications where the available computational resources (time, cpu, memory) are

constrained, the system detection performance may be compromised when the rate of

target detection exceeds the detection system's processing rate. In order to prevent

system overload under these conditions, potential targets must be randomly ignored.

Recently, it has been shown that for a two-stage detection system, where a simple �rst

stage detector screens potential targets for a computationally-intensive but reliable

second stage, the overall system detection probability is maximized if the �rst stage

is designed using a rate-constraint criterion which matches the detection rate of the

�rst stage to the processing rate of the second stage [87].

In this context, the track initiation stage of the MMHTT algorithm can be viewed

as a two-stage detection system where the lower �rst stage MSHT threshold

^

b im-

plements a simple �rst stage detector and the complete MSHT algorithm acts as a

computationally expensive but reliable second stage detector. The rate-constraint

is easily incorporated by replacing the lower �rst stage MSHT threshold with an

adaptive threshold

�

RC

= max(

^

b; T

RC

): (3:52)
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Thus, new trajectories are only initiated at pixels where the feature detection like-

lihood ratio, f(I[x; t]), exceeds a threshold T

RC

which is adaptively computed using

the rate-constrained detection criterion,

��(T

RC

) + (1� �)�(T

RC

) = � (3:53)

where � is the a priori probability that a new target is present, � is the detection

probability given T

RC

, � is the probability of false alarm given T

RC

and � is the

maximum managable rate of new target detections given the current computational

load.

Note that T

RC

can only take a �nite number of discrete values due to the discrete

nature of the image observations. Consequently, for speci�ed statistical models of

the feature and the image background, �(T

RC

) and �(T

RC

) can be pre-computed and

stored in a lookup-table for real-time processing. Furthermore, the a priori probability

� can be estimated from the observed detection rate �̂.

Auxilliary Region of Interest Process

For certain applications, such as the feature correspondence tracking system discussed

in Chapter 5, auxiliary information may be used to control the track initiation process.

If auxiliary information is available which can reliably partition each image frame into

background image regions and regions of interest for target detection and tracking,

this information can be used as a global mask to inhibit track initiation in background

regions of the current image frame. For example, as will be discussed in Chapter 5,

the detection and tracking of feature point correspondences for moving objects in a

stationary image environment can employ a change detection process to identify and

isolate those regions of each image frame for which there has been no statistically

signi�cant deviation from an adaptive reference image described in section 5.3.2.

This allows the system to focus its computational resources on detecting and tracking

feature points (targets) in those regions of the image most likely to contain moving

objects.
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3.3.2 Pruning and Combining Hypotheses

The following section outlines several standard MHT techniques for pruning and com-

bining hypotheses [7]. These techniques are commonly used to manage the computa-

tional complexity of multiple hypothesis tracking algorithms and provide a convenient

means to control the computational cost of the MMHTT algorithm. Acknowledging

that computational resource limitations restrict the number of hypotheses that can

be e�ectively managed and evaluated, these techniques attempt to identify those

tracking hypotheses which are most probable.

Competing hypotheses are evaluated by comparing their respective score functions

(see sections 3.2.3 and 3.2.4). Those hypotheses with the highest scores are retained

and those with lower scores are deleted. The probability that each of the retained

hypotheses is valid can then be re-evaluated relative to the total probability of the

remaining hypotheses. It is commonly recognized that by ignoring a number of track-

ing hypotheses with a small but nonzero probability the optimality of the Bayesian

multiple hypothesis approach is compromised [35, 7]. However, the resultant perfor-

mance loss is typically small, and dependent on the total probability of the deleted

hypotheses.

In the following, several strategies for hypothesis reduction will be outlined and

then applied to the tracking example presented in section 3.2.5.

Combining Track Hypotheses

Consider, for a moment, two track hypotheses which have their last N observations

in common. As time progresses, the distinct origin of each track hypothesis becomes

less and less relevant to the decision processes of the MTT system. At some point, the

two hypotheses are essentially redundant with respect to current tracking decisions

and the two hypotheses can be combined.

This concept is formalized in what is commonly known as the N-scan rule [7].

Hypotheses which represent the same trajectory, within the resolution requirements of

a given application, are combined by combining hypotheses whose last N observations

are the same. The value of N is application dependent and is a function of the desired

accuracy and temporal history of target observations.
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Pruning Track Hypotheses

As discussed in section 3.2.4, each global tracking hypothesis consists of a set of com-

patible track hypotheses, where in general, each track hypothesis may be a member

of more than one global hypothesis. Following Blackman et al. [35], we de�ne the

global probability that a given track hypothesis T in the k

th

cluster C

k

is valid as:

Pr(T j D

k

) =

J

X

j=1

Pr(T j H

j

;D

k

) Pr(H

j

j D

k

) (3:54)
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j

,

0; otherwise.

(3:55)

Note that this is just the sum of the probabilities that the global hypotheses, of which

T is a member, are valid.

This global evaluation of the probability that the track hypothesis T is valid, is

more accurate than the local evaluation described in section 3.2.3, as it incorporates all

the data association hypotheses regarding its constituent image observations. Thus,

an evaluation of the global track hypothesis probabilities can identify track hypotheses

which appear highly probable in a local analysis but which are members of improbable

global hypotheses. These track hypotheses are candidates for hypothesis pruning.

There are two basic approaches to pruning track hypotheses [7]. One technique

is to rank all current track hypotheses based on an evaluation of their global prob-

abilities and maintain the M most probable hypotheses. This technique guarantees

a constant computational load for hypothesis maintenance. Alternatively, one can

prune unlikely global hypotheses and by association prune their constituent track

hypotheses. For example, Blackman has proposed a pruning procedure in which the

(N+1)'th hypothesis in a ranked list of global hypotheses is deleted if it satis�es

N

X

j=1

L

H

j

�NL

H

N+1

> T

S

(3:56)

where N is the total number of alternate hypotheses, and T

S

is a decision threshold

which may adapt to the current computational load of the host system [7]. This pro-

cedure prunes track hypotheses which are not members of retained global hypotheses.
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Splitting Clusters

After the track hypotheses have been pruned, the track hypothesis clusters should be

re-evaluated. The removal of one or more track hypotheses from a given cluster may

allow the cluster to be split into two or more sets of non-interacting tracks. If this is

the case, then the cluster is split into smaller clusters accordingly.

Algorithm 6 (Track hypothesis cluster evaluation: Cluster Split)

Set 
ag.

For each Cluster C, from which a track hypothesis was pruned,

Let NT be the number of track hypotheses in Cluster C.

For track hypothesis T

j

2 C j := 1 to NT ,

For each new cluster

^

C

k

,

For each track hypothesis T 2

^

C

k

,

If Y

T

j

T

Y

T

6= ;,

If 
ag is set,

Move T

j

from C

i

to

^

C

k

.

Set temp = k and clear 
ag.

Else merge

^

C

temp

and

^

C

k

.

If 
ag is set,

Create new cluster

^

C.

Move T

j

from C to

^

C.

For each track hypothesis T

k

2 C, k > j,

For each track hypothesis T 2

^

C,

If Y

T

k

T

Y

T

6= ;,

Move T

k

from C to

^

C.

For each new cluster

^

C

k

,

For each track hypothesis T 2

^

C

k

,

If Y

T

k

T

Y

T

6= ;,

Merge

^

C and

^

C

k

.
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An Example

Returning to the example tracking scenario presented in section 3.2.5, the e�ects of

hypothesis pruning will be examined by reworking the generation and evaluation of

the tracking hypotheses summarized in Tables 3.3 to 3.8. For the purposes of this

example, it will be assumed that the alternative hypothesis pruning procedure is

applied with T

S

= 4.

Reconsider the track hypotheses after Frame 6, as summarized in Table 3.5. As

discussed in section 3.2.3, each track hypothesis has a track hypothesis score L

T

which

is the sum of the scores of its constituent candidate trajectory segments. The track

hypothesis scores for the eight track hypotheses in existence after Frame 6 are listed

in Table 3.9.

Frame 6

Track

Hypothesis Score

T1 3.16

T2 6.52

T3 3.36

T4 8.02

T5 3.70

T6 6.92

T7 3.22

T8 4.32

Table 3.9: Track Hypothesis Scores after Frame 6

Given the scores for each individual track hypothesis, the scores for the global

hypotheses enumerated in Table 3.6 can also be computed. Assuming equal priors

for the track hypotheses, (C

T

= 0 8T ), the global hypothesis scores are simply the

sums of the scores of their constituent track hypotheses (see Table 3.10).

After applying the pruning procedure proposed by Blackman [7], with T

S

= 4, only

the top two global hypotheses H13 and H5 are retained. Hypothesis H13, consisting

of track hypotheses T2 and T6, correctly identi�es the two target trajectories and
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Frame 6

Global Global Global Global

Hypothesis Score Pr(H

i

j D

k

) Hypothesis Score Pr(H

i

j D

k

)

H1 3.16 3 � 10

�5

H11 6.38 7 � 10

�4

H2 6.52 8 � 10

�4

H12 10.22 0.0317

H3 3.36 3 � 10

�5

H13 13.44 0.793

H4 8.02 3:5 � 10

�5

H14 9.74 0.0196

H5 11.18 0.0828 H15 7.06 1 � 10

�3

H6 3.70 5 � 10

�5

H16 10.28 0.0336

H7 6.92 1 � 10

�3

H17 6.58 8 � 10

�4

H8 3.22 3 � 10

�5

H18 4.32 9 � 10

�5

H9 6.86 1 � 10

�3

H19 7.48 2 � 10

�3

H10 10.08 0.0276

Table 3.10: Global Hypothesis Scores after Frame 6
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is ranked as the most likely hypothesis with Pr(H

13

j D

1

) = 0:905 after pruning.

Hypothesis H5, consisting of track hypotheses T1 and T4, is retained as an alternate

global hypothesis with Pr(H

5

j D

1

) = 0:0945 after pruning. Since track hypotheses

T1; T2; T4 and T6 are the only track hypotheses which are members of at least one

of the retained global hypotheses, the remaining track hypotheses are deleted.

At this point the track hypotheses in the cluster are re-evaluated to determine if

it is possible to split the cluster. Note that track hypothesis T1 interacts with track

hypothesis T2, track hypothesis T2 interacts with track hypothesis T4 and track

hypothesis T4 interacts with track hypothesis T6. Thus, all the track hypotheses in

the cluster interact with each other either directly or indirectly and the cluster cannot

be split.

Continuing on to Frame 7, the renumbered track hypotheses after Frame 7, with

hypothesis pruning, are listed in Table 3.11 and the renumbered global hypotheses

after Frame 7 are listed in Table 3.12. In this instance, the pruning procedure retains

the top 3 hypotheses H15;H7 and H13. Note that the most likely hypothesis H15

(Pr(H

15

j D

k

) = 0:72 after pruning) consists of the true target trajectory for Target

#2 and a false target trajectory for Target #1. A standard single frame data asso-

ciation algorithm would incorrectly accept hypothesis H15 and delete the true track

hypothesis for Target #1, T2. However, the MMHTT algorithm maintains multiple

hypotheses including the correct global hypothesis H7 (Pr(H

7

j D

k

) = 0:17 after

pruning) and another alternate hypothesis H13 (Pr(H

13

j D

k

) = 0:11 after pruning).

Consequently, track hypotheses T1; T2; T3; T4; T6 and T7 are retained. Note that

all of these track hypotheses interact with each other either directly or indirectly and

hence, the cluster cannot be split.

In Frame 8, a single candidate trajectory segment is con�rmed (see Table 3.2).

This segment is the result of a test initiated at (5,5) in Frame 6 and con�rmed at

(7,7) in Frame 8. The renumbered track hypotheses which survived the pruning

procedure at the end of Frame 7 and the track hypotheses created as a result of the

current con�rmed trajectory segment are listed in Table 3.13 and the resulting global

hypotheses are listed in Table 3.14.

The pruning procedure after Frame 8, selects the two most likely hypotheses H13
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Frame 7

Target Track Track

Cluster 1 2 3 4 5 6 7 Hypothesis Score

1 (0,0) (1,1) (2,2) (3,3) T1 3.16

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) T2 6.52

(8,1) (7,2) (6,3) (5,4) (5,5) T3 8.02

(8,1) (7,2) (6,3) (5,4) (4,5) T4 6.92

(8,1) (7,2) (6,3) (5,4) (5,5) (4,6) T5 4.32

(5,5) (4,6) T6 2.98

(0,0) (1,1) (2,2) (3,3) (4,4) (4,5) (5,6) T7 6.88

(3,3) (4,4) (4,5) (5,6) T8 3.72

Table 3.11: Track Hypotheses after Frame 7

Frame 7

Hypotheses Hypotheses

Global Track Score Pr(H

i

j D

k

) Global Track Score Pr(H

i

j D

k

)

H1 T1 3.16 5� 10

�6

H12 T4,T6 9.90 4� 10

�3

H2 T2 6.52 1:5� 10

�4

H13 T1,T4,T6 13.06 0.105

H3 T3 8.02 7� 10

�4

H14 T7 6.88 2� 10

�4

H4 T1,T3 11.18 0.0161 H15 T3,T7 14.9 0.663

H5 T4 6.92 2� 10

�4

H16 T5,T7 11.20 0.0164

H6 T1,T4 10.08 5� 10

�3

H17 T6,T7 9.86 4� 10

�3

H7 T2,T4 13.44 0.154 H18 T8 3.72 9� 10

�6

H8 T5 4.32 2� 10

�5

H19 T3,T8 11.74 0.0281

H9 T1,T5 7.48 4� 10

�4

H20 T5,T8 8.04 7� 10

�4

H10 T6 2.98 4� 10

�6

H21 T6,T8 6.70 2� 10

�4

H11 T1,T6 6.14 1� 10

�4

Table 3.12: Global Track Hypotheses after Frame 7
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Frame 8

Target Track Track

1 2 3 4 5 6 7 8 Hypothesis Score

(0,0) (1,1) (2,2) (3,3) T1 3.16

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) T2 6.52

(8,1) (7,2) (6,3) (5,4) (5,5) T3 8.02

(8,1) (7,2) (6,3) (5,4) (4,5) T4 6.92

(5,5) (4,6) T5 2.98

(0,0) (1,1) (2,2) (3,3) (4,4) (4,5) (5,6) T6 6.88

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (6.6) (7,7) T7 9.64

(5,5) (6.6) (7,7) T8 3.12

Table 3.13: Track Hypotheses after Frame 8

Frame 8

Hypotheses Hypotheses

Global Track Score Pr(H

i

j D

k

) Global Track Score Pr(H

i

j D

k

)

H1 T1 3.16 1� 10

�6

H12 T4,T5 9.90 1� 10

�3

H2 T1,T3 11.18 3:5� 10

�3

H13 T4,T7 16.56 0.762

H3 T1,T4 10.08 1� 10

�3

H14 T1,T4,T8 13.20 0.0265

H4 T1,T5 6.14 2� 10

�5

H15 T4,T8 10.04 1� 10

�3

H5 T1,T8 6.28 3� 10

�5

H16 T5 2.98 1� 10

�6

H6 T2 6.52 3� 10

�5

H17 T5,T6 9.86 9� 10

�4

H7 T2,T4 13.44 0.0336 H18 T6 6.88 5� 10

�5

H8 T3 8.02 1� 10

�4

H19 T6,T8 10.00 1� 10

�3

H9 T3,T6 14.90 0.145 H20 T7 9.64 7:5� 10

�4

H10 T4 6.92 5� 10

�5

H21 T8 3.12 1� 10

�6

H11 T1,T4,T5 13.06 0.0230

Table 3.14: Global Track Hypotheses after Frame 8

100



(Pr(H

13

j D

k

) = 0:84 after pruning) and H9 (Pr(H

9

j D

k

) = 0:16 after pruning).

Note that neither hypothesis correctly re
ects both target trajectories but that both

true target trajectories are retained. An evaluation of the retained track hypotheses

reveals that the cluster cannot yet be split.

In Frame 10, two candidate trajectory segments are con�rmed. The �rst is the

result of a multistage hypothesis test initiated at (4,5) in Frame 6 and con�rmed at

(0,9) in Frame 10. The second is the result of a multistage hypothesis test initiated

at (7,7) in Frame 8 and con�rmed at (9,9) in Frame 10. The resulting track hy-

potheses are listed in Table 3.15 and the corresponding global hypotheses are listed

in Table 3.16.

Frame 10

Target Track Track

1 2 3 4 5 6 7 8 9 10 Hypothesis Score

(8,1) (7,2) (6,3) (5,4) (5,5) T1 8.02

(8,1) (7,2) (6,3) (5,4) (4,5) T2 6.92

(0,0) (1,1) (2,2) (3,3) (4,4) (4,5) (5,6) T3 6.88

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (6.6) (7,7) T4 9.64

(8,1) (7,2) (6,3) (5,4) (4,5) (3,6) (2,7) (1,8) (0,9) T5 9.87

(4,5) (3,6) (2,7) (1,8) (0,9) T6 2.95

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (6.6) (7,7) (8,8) (9,9) T7 12.59

(7,7) (8,8) (9,9) T8 2.95

Table 3.15: Track Hypotheses after Frame 10

After pruning, only hypotheses H16;H7 and H13 are retained. These global

hypotheses are constructed from the four track hypotheses T2; T4; T5 and T7. Note

that track hypotheses T2 and T5 interact with each other but do not interact with

track hypotheses T4 and T7, and vice versa. Thus, the cluster can now be split into

two track hypothesis clusters. One cluster contains track hypotheses T2 and T5 and

the other cluster contains track hypotheses T4 and T7.

The global hypotheses for each of the new track hypothesis clusters now consist of

single track hypotheses as in Frame 4 (see Table 3.17). Note that the algorithm has
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Frame 10

Hypotheses Hypotheses

Global Track Score Pr(H

i

j D

k

) Global Track Score Pr(H

i

j D

k

)

H1 T1 8.02 5� 10

�7

H13 T4,T5 19.51 0.0468

H2 T1,T3 14.9 5� 10

�4

H14 T4,T6 12.59 5� 10

�5

H3 T1,T6 10.97 9� 10

�6

H15 T5 9.87 3� 10

�6

H4 T1,T8 10.97 9� 10

�6

H16 T5,T7 22.46 0.893

H5 T2 6.92 2� 10

�7

H17 T5,T8 12.82 6� 10

�5

H6 T2,T4 16.56 2� 10

�3

H18 T6 2.95 3� 10

�9

H7 T2,T7 19.51 0.0468 H19 T6,T7 15.54 9� 10

�4

H8 T2,T8 9.87 3� 10

�6

H20 T1,T6,T8 13.92 2� 10

�4

H9 T3 6.88 1:5� 10

�7

H21 T6,T8 5.90 6� 10

�8

H10 T1,T3,T8 17.85 9� 10

�3

H22 T7 12.59 5� 10

�5

H11 T3,T8 9.83 3� 10

�6

H23 T8 2.95 3� 10

�9

H12 T4 9.64 2� 10

�6

Table 3.16: Global Track Hypotheses after Frame 10
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correctly resolved the two distinct target trajectories with the reception of additional

observations of each target. The algorithm's ability to correct the association errors it

committed in Frames 7 and 8 is a direct result of its ability to maintain and evaluate

alternate tracking hypotheses.

Frame 10

Hypotheses

Cluster Global Track Score Pr(H

i

j D

k

)

1 H1 T2 6.92 0.05

H2 T5 9.87 0.95

2 H1 T4 9.64 0.05

H2 T7 12.59 0.95

Table 3.17: Global Track Hypotheses after Cluster Split

3.4 Implementation Notes

The data processing algorithms used to manage the multiplicity of detection and

tracking hypotheses in the MMHTT algorithm can be e�ciently implemented using

standard dynamic data structures [7, 88]. In particular, the linked list is a convenient

construct for changing the logical organization of a data structure without a�ecting

its physical memory storage. Conceptually, a linked list is simply a list of data

structures or records which are linked by a construct called a pointer. A pointer is

simply a variable which contains a memory address, in this case the memory address

of a particular data record. The primary advantage of these constructs is that many

of the MMHTT data processing algorithms only a�ect the logical organization of

the track records and can thus be implemented as simple pointer operations without

directly manipulating the data records themselves.

Linked lists are used to manage multiple hypotheses at every stage of the MMHTT

processing hierarchy. At the lowest level, candidate trajectories are stored in linked

lists relative to their hypothesized location in the current frame. These candidate
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trajectories are used to form track hypotheses which are stored in linked lists of in-

dependent track hypotheses or track hypothesis clusters. Meanwhile, at the highest

level, each global hypothesis contains a linked list of track hypotheses and is itself

contained in a linked list of global hypotheses for a particular track hypothesis cluster.

Each track hypothesis cluster thus contains a linked list of member track hypotheses

and a linked list of global hypotheses generated from the member track hypotheses.

Each cluster is itself stored in a linked list of track hypothesis clusters. In the follow-

ing, the dynamic data structures used to implement the MMHTT algorithm will be

brie
y outlined and discussed.

As discussed in section 3.1.2, the candidate trajectory records generated by the

lowest level of the MMHTT processing hierarchy are stored in linked lists. Each can-

didate trajectory is stored in the linked list associated with its hypothesized location

in the current frame. Thus, for each pixel location, there is a linked list of candidate

trajectories which pass through that pixel in the current frame.

For each new image frame, the candidate trajectories, in the linked list for each

pixel, are updated with the new image observation and then evaluated with the next

stage of their respective multistage hypothesis tests. If the target absent hypothesis is

accepted, the candidate trajectory is removed from the list and its memory returned

to the system. If the target present hypothesis is accepted, the candidate trajectory is

passed to the tracking stage and a new candidate trajectory search is initiated in the

current pixel. However, if the multistage hypothesis test is undecided, the children

of the current candidate trajectory are obtained from the candidate trajectory data

structure, using the node id in the candidate trajectory record (see sections 3.1.1

and 3.1.2). New candidate trajectory data records are then created and added to

the linked list of the appropriate pixel in the subsequent frame. Thus, the detection

stage of the MMHTT algorithm operates on the preprocessed image data and the

undecided candidate trajectories stored in the linked lists for each image pixel to

generate con�rmed target trajectory segments for track hypothesis generation and

evaluation.

The basic element of the tracking stage of the MMHTT algorithm is the track

record. Each track record summarizes the essential details of a hypothesized target
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within the following �elds:

1. a pointer to the previous track record in the track master list,

2. a pointer to the next track record in the track master list,

3. a pointer to the previous track record in the track hypothesis cluster list,

4. a pointer to the next track record in the track hypothesis cluster list,

5. the track hypothesis score, L

T

k

,

6. the track's nominal direction, and

7. a list of the last N target observations for the N-scan combining rule.

In addition, a track record for a complete MTT system may also contain the current

target state estimate.

A new track record is created for every track hypothesis that is generated. The

records themselves are stored in a master list of track hypotheses and then referenced

by track pointers in the track hypothesis cluster and global hypothesis data structures.

This allows the data memory for the track records to be managed independently of

the logical organization of the track records into track hypothesis clusters and global

hypotheses.

As discussed in section 3.2.4, the set of track hypotheses are organized into subsets

of non-interacting track hypotheses or track hypothesis clusters. Each track hypoth-

esis cluster is a dynamic data structure consisting of a list of track hypotheses and a

list of global hypotheses in a linked list of other track hypothesis clusters. Thus, each

cluster data record contains the following �elds:

1. a pointer to the previous cluster in the cluster list,

2. a pointer to the next cluster in the cluster list,

3. a linked list of pointers to the track hypothesis records in the track master list,

4. and a linked list of global hypotheses.
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Each global hypothesis is simply a logical collection of track hypotheses. Thus, each

global hypothesis record simply contains:

1. a pointer to the previous global hypothesis in the cluster,

2. a pointer to the next global hypothesis in the cluster,

3. the global hypothesis score L

H

, and

4. a linked list of pointers to the track hypothesis records in the track master list.

As candidate trajectories are con�rmed, track records are created for each new

track hypothesis (see Algorithm 3) and added to the track master list. With the

addition of each new track hypothesis, the track hypothesis clusters are re-evaluated

(see Algorithm 4). If the new track hypothesis interacts with one or more track

hypotheses from a given track hypothesis cluster, then a pointer to the new track

hypothesis track record is added to the cluster track list. If the new track hypothesis

interacts with track hypotheses from more than one track hypothesis cluster then the

clusters are merged. Merging two clusters is a simple matter of adding the track list

of one cluster to the track list of the other cluster and removing the �rst cluster from

the cluster list. Finally, if the new track hypothesis does not interact with any of the

track hypotheses in the current track hypothesis clusters, then a new track hypothesis

cluster record is created and added to the cluster list. A pointer to the new track

hypothesis record is then added to the track list of the newly created track hypothesis

cluster record.

Global hypotheses can be generated for each cluster as desired for a global eval-

uation of the track hypotheses or for hypothesis pruning (see Algorithm 5). If after

hypothesis pruning the track hypotheses in the track hypothesis cluster can be split

into two or more smaller track hypothesis clusters (see Algorithm 6), the cluster is

removed from the cluster list and new cluster records are created for each of the new

smaller clusters. These clusters are then added to the cluster list and processing

resumes.
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3.5 Summary

A new algorithm, Multiple Multistage Hypothesis Test Tracking, for detecting and

tracking point-source targets in a sequence of digital images has been developed. The

MMHTT algorithm transforms a sequence of preprocessed digital images into a set of

target tracks suitable for state/motion estimation. At the lowest level, the algorithm

behaves as a spatial array of independent detectors with local communications. Each

detector implements a robust and e�cient sequential detection algorithm (truncated

SPRT) by updating the multistage hypothesis tests for the local candidate target

trajectories. Once con�rmed, these target trajectory segments are combined to form

target track hypotheses to describe the observed dynamics of the detected targets

over an extended number of frames.

Each hypothesized target trajectory is approximated by a sequence of short, linear,

constant velocity trajectory segments, generated by successive candiate trajectory

searches. This provides the algorithm with an e�cient means of tracking maneouvring

targets for an extended number of image frames with a minimal assumption of local

trajectory linearity. Finally, at a global level, known physical constraints can be

applied to generate and evaluate globally consistent sets of track hypotheses and to

resolve data association decisions which are ambiguous at a local level.

Algorithm 7 (Multiple Multistage Hypothesis Test Tracking)

Construct hierarchical lookup-table for candidate trajectory set.

Construct hypothesis test threshold lookup-table indexed by test stage.

Initialize undecided candidate trajectory lists for every image pixel location.

For each preprocessed image frame,

Evaluate the new image observation at each pixel for test initiation (see section 3.3.1).

Update the multistage hypothesis tests for each candidate trajectory (see Algorithm 5).

Update track hypotheses for each cluster (see Algorithms 3 and 4).

Generate global hypotheses (see Algorithm 5).

Prune and combine track hypotheses (see section 3.3.2).
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Chapter 4

Performance Analysis

The following chapter develops procedures for evaluating the performance of the

MMHTT algorithm. Performance expressions are developed from models of the back-

ground clutter and detector noise, and used to develop simple computational proce-

dures to predict the algorithm's performance for arbitrary multitarget scenarios. In

general, a thorough performance analysis requires extensive computer simulations un-

der realistic operating conditions. In fact, the development of de�nitive performance

measures for multitarget tracking is still an open problem [89, 90]. Consequently, the

following discussion is limited to the development of performance analysis procedures

that are a direct function of the MMHTT algorithm.

The keystone in the development of the MMHTT algorithm is the application of

the truncated SPRT to the binary hypothesis testing problem of (2.14), with inde-

pendent observations. An analysis of this problem yields useful measures of system

performance. In particular, an analysis of the performance of a truncated SPRT, as

a decision rule for (2.14), yields three statistics

1. the probability of accepting a false alarm (�),

2. the probability of missing a target detection (�), and

3. the average test length (E(T )).

These three statistics summarize the detection performance of the MMHTT algorithm

for di�erent signal models and can be used to evaluate the algorithm's global detection

and tracking performance.
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4.1 Single Candidate Trajectory Performance

The �rst stage in analyzing the performance of the MMHTT algorithm is to evaluate

the performance of the sequential decision rule used to evaluate the candidate trajec-

tories. The performance of the multistage hypothesis test de�ned in Chapter 3 can

be analyzed for any hypothesized trajectory where the probability distribution of the

observations is known. As in [40], the approach of Aroian and Robison [91] will be

used to evaluate the resulting detection error probabilities.

The following analysis is a generalization of the analysis in [40] to include the

performance of multistage hypothesis tests where the observations are not identically

distributed. This allows an evaluation of the performance of a given multistage hy-

pothesis test for candidate trajectories which consist of observations of both the image

background and one or more targets. These conditions arise when target trajectories

intersect the candidate trajectory for some but not all of its length. The results of this

analysis will be used in section 4.2 to analyze the performance of multiple multistage

hypothesis tests applied to given target tracking scenarios.

Let the probability distribution function for each test sample X

i

be one of

f(x

i

j H

0

) : X

i

= lnL(Y

i
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i
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2 �
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0
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f(x
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1

) : X

i
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i
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i

� f

Y

(y j �
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2 �

H

1

)

(4:1)

and let the corresponding cumulative distribution functions (cdf) be de�ned as

F (x j H

j

) =

Z

x

�1

f(t j H

j

) dt; j 2 f0; 1g (4:2)

In general, the observed test sample x

i

is the log-likelihood ratio of the image obser-

vation y

i

under the target present and target absent hypotheses

x
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However, when the image observations y

i

are distributed as iid Gaussian random

variables (N(�

H

j

; �

2

)), the truncated SPRT in (3.12) can be expressed as a multistage

hypothesis test (2.33) with decision thresholds [40]
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and

a
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H
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For this special case, the test sample x

i

is simply the i'th image observation y

i

.

The key performance parameters of a multistage hypothesis test for a candidate

trajectory with non-iid observations can be de�ned as:

� the probability of accepting the target absent hypothesis H

0

at stage i,

�

H

0

i

(�) � Pr(accept H

0

at stage i j �) (4:6)

� the probability of accepting the target present hypothesis H

1

at stage i

�

H

1

i

(�) � Pr(accept H

1

at stage i j �) (4:7)

� and the probability that the test reaches stage i+ 1.

�

H

;

i

(�) � Pr(test reaches stage i+ 1 j �) (4:8)

where the distribution of the image observations Y = fY

1

; : : : ; Y

n

g, along the candi-

date trajectory, are de�ned by a sequence of parameter vectors

� � f�

j

j Y

j

� f

Y

(y j �

j

); 1 � j � ng (4:9)

indicating the sequence of target present and target absent image observations. Thus,

the performance of a multistage hypothesis test (2.33) along an arbitrary candidate

trajectory can be analyzed as follows:

De�ne the pdf of the i'th test sample X

i

as

f

i

(x) = f(x

i

j H

j

); j 2 f0; 1g (4:10)

the corresponding cdf as

F

i

(x) = F (x

i

j H

j

); j 2 f0; 1g (4:11)

and the pdf of the cumulative test statistic

P

i

j=1

x

j

as

f

?

i

(x) (4:12)
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Since the observations y were assumed to be independent, the test samples x =

fx

1

; : : : ; x

n

g are independent and the probability distribution f

?

i+1

(x) can be com-

puted as

f
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Z
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?
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Then the �rst stage performance expressions are easily obtained as
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Thus, the probability that the test continues after stage i + 1 (i.e. reaches stage

i+ 2), is given by
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where we have used the fact that
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These expressions can be evaluated using standard numerical integration techniques

as long as f(x j H

j

) is su�ciently smooth [93].

Since the test must terminate in exactly one of the K stages, the power function

consists of K mutually exclusive events. Thus,

Pr(accept H

1

at any stage j �) =

K

X

i=1

�

H

1

i

(�); (4:24)

the false alarm rate for any hypothesized trajectory is

�

HT

(�) =

K

X

i=1

�

H

1

i

(�); where �

i

2 �

H

0

; (4:25)

and the detection probability for any hypothesized trajectory is

(1 � �

HT

(�)) =

K

X

i=1

�

H

1

i

(�); where �

i

2 �

H

1

: (4:26)

The average test length, E(T j �) is obtained by expressing the probability of termi-

nating in the i

th

stage as �

H

;

i�1

(�) � �

H

;

i

(�), for 1 � i � K, and the probability of

terminating in the �nal stage as �

H

;

K�1

(�). Thus, de�ne �

H

;

0

(�) � 1, and

E(T j �) = [

P

K�1

i=1

i(�

H

;

i�1

(�)� �

H

;

i

(�))] +K�

H

;

K�1

(�)

=

P

K

i=1

�

H

;

i�1

(�)

: (4:27)

In the next section, these expressions will be used to analyze the detection perfor-

mance of the MMHTT algorithm for a tree-structured candidate trajectory set.

4.2 Performance for a Candidate Trajectory Tree

The preceding section described a procedure for evaluating the single trajectory de-

tection performance of a multistage hypothesis test, for an arbitrary sequence of

observations. Since the target detection algorithm of section 3.1 consists of multiple

multistage hypothesis tests, this procedure can be used to evaluate the local detection

performance of a candidate trajectory set applied to an arbitrary image sequence. If

each of the image observations y

i

can be modelled as realizations of random variables

from one of two probability distributions, then an evaluation of the stage by stage

performance speci�cations, �

H

i

= f�

H

;

i

(�); �

H

0

i

(�); �

H

1

i

(�)g for all �, is su�cient to
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bound the detection performance of an arbitrary candidate trajectory set. In general,

the analysis of a K-stage candidate trajectory set requires an evaluation of 2

K

single

trajectory tests. In fact, this analysis can be generalized for image observations which

can be modelled as realizations of random variables from one of an arbitrary but �nite

number of known probability distributions.

If the trajectory of each target in the image sequence is known, the path of each

candidate trajectory in the set can be compared to the target trajectories to de-

termine the probability distribution of observations along each candidate trajectory.

This sequence can then be used as an index to retrieve the appropriate multistage

hypothesis test speci�cations �

H

i

for each test stage, enabling an analysis of the prob-

ability of false alarm, and the probability of missed detection at each stage. It can

be shown that the error probabilities for the candidate trajectory set are no greater

than the sum of the error probabilities of each candidate trajectory in the set. Thus,

summing these results over all the candidate trajectories in the set yields a measure

of the total probability of false alarm and the total probability of missed detection

for the candidate trajectory set.

Figure 4.1: A 3-Stage Candidate Trajectory Tree.

As an example, consider the K=3-stage candidate trajectory tree depicted in �g-

ure 4.1. This tree contains 49 candidate trajectories covering the complete range of

discrete target trajectories with a maximum target velocity of 1 pixel/frame. Each

candidate trajectory originates in the root pixel (0; 0) of the �rst frame and termi-

nates in one of the 25 pixels in the velocity annulus of the third frame (see Table 4.1).
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Target Pixel Locations for 3-stage Candidate Trajectory Tree

Candidate Image Frame Candidate Image Frame

Trajectory 1 2 3 Trajectory 1 2 3

1 (0,0) (0,0) (0,0) 26 (0,0) (-1,0) (-2,-1)

2 (0,0) (0,0) (-1,1) 27 (0,0) (-1,0) (-2,0)

3 (0,0) (0,0) (0,1) 28 (0,0) (-1,0) (-1,-1)

4 (0,0) (0,0) (-1,-1) 29 (0,0) (-1,0) (-1,0)

5 (0,0) (0,0) (-1,0) 30 (0,0) (0,-1) (-1,-2)

6 (0,0) (0,0) (0,-1) 31 (0,0) (0,-1) (-1,-1)

7 (0,0) (0,0) (1,-1) 32 (0,0) (0,-1) (0,-2)

8 (0,0) (0,0) (1,0) 33 (0,0) (0,-1) (0,-1)

9 (0,0) (0,0) (1,1) 34 (0,0) (0,-1) (1,-2)

10 (0,0) (-1,1) (-2,1) 35 (0,0) (0,-1) (1,-1)

11 (0,0) (-1,1) (-2,2) 36 (0,0) (1,-1) (1,-2)

12 (0,0) (-1,1) (-1,1) 37 (0,0) (1,-1) (1,-1)

13 (0,0) (-1,1) (-1,2) 38 (0,0) (1,-1) (2,-2)

14 (0,0) (0,1) (-1,1) 39 (0,0) (1,-1) (2,-1)

15 (0,0) (0,1) (-1,2) 40 (0,0) (1,0) (1,-1)

16 (0,0) (0,1) (0,1) 41 (0,0) (1,0) (2,-1)

17 (0,0) (0,1) (0,2) 42 (0,0) (1,0) (1,0)

18 (0,0) (0,1) (1,1) 43 (0,0) (1,0) (1,1)

19 (0,0) (0,1) (1,2) 44 (0,0) (1,0) (2,0)

20 (0,0) (-1,-1) (-2,-2) 45 (0,0) (1,0) (2,1)

21 (0,0) (-1,-1) (-2,-1) 46 (0,0) (1,1) (1,1)

22 (0,0) (-1,-1) (-1,-2) 47 (0,0) (1,1) (1,2)

23 (0,0) (-1,-1) (-1,-1) 48 (0,0) (1,1) (2,1)

24 (0,0) (-1,0) (-2,1) 49 (0,0) (1,1) (2,2)

25 (0,0) (-1,0) (-1,1)

Table 4.1: Candidate Trajectories for a 3-Stage Tree
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Assuming that two probability distributions are su�cient to model the image

observations in the presence and absence of a target, the detection performance of

each candidate trajectory can be described by one of the 2

3

= 8 single trajectory

analyses depicted in �gure 4.2 and listed in Table 4.2. Note that the performance

statistics for the early stages of the test are shared by several trajectory analyses. In

general, the i

th

stage performance statistics are shared by 2

K�i

other single trajectory

analyses.
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Figure 4.2: Performance Analysis Tree (K = 3)

For a known target trajectory, each of the 49 candidate trajectories in Table 4.1 has

a sequence of target present and target absent observations corresponding with one of

the trajectory analyses in Table 4.4. For example, if it is known that the true target

trajectory has coordinates f(0,0), (1,0), (2,0)g relative to the origin of the candidate

trajectory set, then the candidate trajectories in Table 4.1 can be mapped to the per-

formance analyses listed in Table 4.4 (see Table 4.3). Note that if candidate trajectory

44 is the desired target trajectory, candidate trajectories f1; 2; : : : ; 39; 46; 47; 48; 49g
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Stage Theta �

H

1 �

0

= f�

H

0

g �

H

1

(�

0

)

�

1

= f�

H

1

g �

H

1

(�

1

)

2 �

2

= f�

H

0

; �

H

0

g �

H

2

(�

2

)

�

3

= f�

H

0

; �

H

1

g �

H

2

(�

3

)

�

4

= f�

H

1

; �

H

0

g �

H

2

(�

4

)

�

5

= f�

H

1

; �

H

1

g �

H

2

(�

5

)

3 �

6

= f�

H

0

; �

H

0

; �

H

0

g �

H

3

(�

6

)

�

7

= f�

H

0

; �

H

0

; �

H

1

g �

H

3

(�

7

)

�

8

= f�

H

0

; �

H

1

; �

H

0

g �

H

3

(�

8

)

�

9

= f�

H

0

; �

H

1

; �

H

1

g �

H

3

(�

9

)

�

10

= f�

H

1

; �

H

0

; �

H

0

g �

H

3

(�

10

)

�

11

= f�

H

1

; �

H

0

; �

H

1

g �

H

3

(�

11

)

�

12

= f�

H

1

; �

H

1

; �

H

0

g �

H

3

(�

12

)

�

13

= f�

H

1

; �

H

1

; �

H

1

g �

H

3

(�

13

)

Table 4.2: Performance Tree Analysis Nodes (K = 3)
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contain no target observations and candidate trajectories f40; 41; 42; 43; 45g only dif-

fer from the true target trajectory in the last stage of the multistage hypothesis test.

Stage

Candidate Trajectories 1 2 3

f1; 2; : : : ; 39; 46; 47; 48; 49g �

1

�

4

�

10

f40; 41; 42; 43; 45g �

1

�

5

�

12

f44g �

1

�

5

�

13

Table 4.3: Candidate Trajectory Mapping to Single Track Performance Analyses

Performance Speci�cations by Stage

� Stage 1 Stage 2 Stage 3

�

6

�

H

1

(�

0

) �

H

2

(�

2

) �

H

3

(�

6

)

�

7

�

H

1

(�

0

) �

H

2

(�

2

) �

H

3

(�

7

)

�

8

�

H

1

(�

0

) �

H

2

(�

3

) �

H

3

(�

8

)

�

9

�

H

1

(�

0

) �

H

2

(�

3

) �

H

3

(�

9

)

�

10

�

H

1

(�

1

) �

H

2

(�

4

) �

H

3

(�

10

)

�

11

�

H

1

(�

1

) �

H

2

(�

4

) �

H

3

(�

11

)

�

12

�

H

1

(�

1

) �

H

2

(�

5

) �

H

3

(�

12

)

�

13

�

H

1

(�

1

) �

H

2

(�

5

) �

H

3

(�

13

)

Table 4.4: Mixed-Model Performance Analysis (K = 3)

For any known target scenario, de�ne �

i

(�) as the number of distinct candidate

trajectories at test stage i, which map to each distinct single trajectory performance

analysis �

j

; 1 � j � 13. This quantity is determined by comparing the locations

of the candidate trajectory image observations to the known target locations. For

example, the mapping of the 3-stage candidate trajectory tree to a target trajectory

with coordinates f(0,0),(1,0),(2,0)g yields

�

1

(�

0

) = 0 �

1

(�

1

) = 1

�

2

(�

4

) = 8 �

2

(�

5

) = 1 �

2

(�

j

) = 0 j 2 f2; 3g

�

3

(�

10

) = 43 �

3

(�

12

) = 5 �

3

(�

13

) = 1 �

3

(�

j

) = 0 for j 2 f6; 7; 8; 9; 11g

(4:28)
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If we de�ne the i

th

stage probability of false alarm for the candidate trajectory

set as the probability that the target present hypothesis H

1

is accepted in the absence

of a target in the i

th

stage, for at least one of the candidate trajectories, t

k

,

�

i

= Pr(

[

8t

k

3�

i

62�

H

1

accept H

1

at stage i): (4:29)

Using Bonferroni's inequality [92],

�

i

�

2

i+1

�3

X

j=2

i

�2

�

i

(�

j

)�

H

1

i

(�

j

); �

i

2 �

H

0

: (4:30)

Similarly, the probability of missed detection �

i

for each stage of the candidate tra-

jectory is bounded as

�

i

�

2

i+1

�3

X

j=2

i

�2

�

i

(�

j

)�

H

0

i

(�

j

); �

i

2 �

H

1

: (4:31)

Alternatively, �

i

and �

i

could be evaluated directly. However, although the individual

image observations are mutually independent, the candidate trajectories share at

least one common observation (the root pixel), and the i

th

stage acceptances of a

given hypothesis for any two candidate trajectories are dependent events. Thus, an

explicit evaluation of �

i

and �

i

requires a multidimensional integration of the joint

probability of the image observations, which is impractical for more than a few image

observations.

The detection performance of a sample 3-stage test for Gaussian distributed ob-

servations with

H

1

: Y

i

� N(4:0; 1:0)

H

0

: Y

i

� N(0:0; 1:0)

(4:32)

is listed in Table 4.5. The probabilities of accepting hypotheses H

;

, H

0

and H

1

,

for each candidate trajectory, at each stage of the multistage hypothesis test, are

retrieved from Table 4.5 using the appropriate index �

i

from Table 4.3. These results

are summarized in Table 4.6.

Summing these probabilities over all the candidate trajectories in the candidate

trajectory set, upper bounds can be obtained for the probability of false alarm �, the

probability of detection 1 � � and the expected number of candidate trajectories �
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3-stage Performance Analysis

Stage Theta �

H

0

�

H

1

�

H

;

1 �

0

0.894 2.34e-7 0.105

�

1

0.00299 0.149 0.8475

2 �

2

0.0969 3.14e-7 0.00857

�

3

0.00102 0.0120 0.0924

�

4

0.293 0.00256 0.552

�

5

2.37e-4 0.6035 0.244

3 �

6

0.00857 5.55e-7 0

�

7

0.00618 0.00239 0

�

8

0.0914 0.00103 0

�

9

0.0184 0.0740 0

�

10

0.551 8.63e-4 0

�

11

0.275 0.277 0

�

12

0.237 0.00699 0

�

13

0.0172 0.226 0

Table 4.5: Example Mixed-Model Performance Analysis

Candidate Stage

Trajectories 1 2 3 Total

f1; 2; : : : ; 39; 46; 47; 48; 49g �

H

0

0.00299 0.293 0.551 0.847

Total: 43 �

H

1

0.149 0.00256 8.63e-4 0.153

f40; 41; 42; 43; 45g �

H

0

0.00299 2.37e-4 0.237 0.240

Total: 5 �

H

1

0.149 0.6035 0.00699 0.760

f44g �

H

0

0.00299 2.37e-4 0.0172 0.0205

Total: 1 �

H

1

0.149 0.6035 0.226 0.9795

Table 4.6: Candidate Trajectory Mapping to Single Track Performance Analyses
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for the candidate trajectory set as a whole (see Table 4.7). Note that although the

probability of false alarm for the candidate trajectory set in the absence of targets,

�

NT

, is 3:02�10

�5

the probability of false alarm for the candidate trajectory set under

the assumed target conditions (single target trajectory coincident with candidate

trajectory 44), �

ST

, is 0:09256. This increase in the overall false alarm rate is due to

the signi�cant probability of accepting one of f40,41,42,43,45 g as a true candidate

trajectory.

Stage �

NT

1 � �

NT

�

ST

1� �

ST

1 2.34e-7 N/A 0.0 0.149

2 2.82e-6 N/A 0.0205 0.6035

3 2.72e-5 N/A 0.07205 0.226

Total 3.02e-5 N/A 0.09256 0.9785

Table 4.7: Decision Probabilities for Sample Candidate Trajectory Test Set

4.2.1 Comments

In [40], the detection performance of the MSHT algorithm was only evaluated for iid

observations. The overall false alarm rate was evaluated for the noise-only case, as

� =

K

X

i=1

�

i

(�

H

0

)�

H

1

i

(�

H

0

): (4:33)

The detection performance analysis in [40] has been extended in sections 4.1 and

4.2 to include an evaluation of candidate trajectories with non-iid observations. As

demonstrated by the test case (4.32) in Table 4.7, the presence of a single target

greatly increases the overall false alarm rate.

This should not be surprising, as the multistage hypothesis test used to evaluate

the candidate trajectories was designed to choose between the target present and

target absent hypotheses under an assumption of iid observations. This decision was

designed to meet speci�ed error probabilities for iid observations under each of the

target hypotheses. As demonstrated above, the realized probability of false alarm is

greater than the designed value when the assumption of iid observations fails.

120



The increase in the overall false alarm rate is not a critical weakness of the algo-

rithm. Those false target trajectories with an increased likelihood of being accepted

as true target trajectories share common observations with the true target trajectory,

and the greater the number of target present observations, the greater the likelihood

that the given trajectory will be accepted. Thus, in a sparse target environment, the

candidate trajectory sets of individual targets are independent and the increase in

false alarms is a local phenomenon limited to the immediate neighbours of the target

trajectory pixels.

However, in a dense target environment, the candidate trajectory sets of individual

targets are not independent, and the presence of multiple targets in each candidate

trajectory set leads to an increase in the detection false alarm rate for each candidate

trajectory set. This problem can be analyzed for individual candidate trajectory sets

using the analysis procedures discussed above. However, the problem of associating

observations to individual targets is more properly analyzed in a target tracking con-

text. In the following section, the analysis procedures for a single candidate trajectory

set will be exploited to analyze the tracking performance of the MMHTT algorithm

for repeated candidate trajectory sets.

4.3 Overall Detection and Tracking Performance

In the following, the analysis tools developed in sections 4.1 and 4.2 will be used to

evaluate several aspects of the MMHTT algorithm's overall detection and tracking

performance including the average time to track loss. In addition, the performance

analysis developed in section 4.2 will be extended to evaluate the performance of the

MMHTT algorithm for an arbitrary known target scenario.

4.3.1 Average Time to Track Loss

An important measure of tracking performance is the average time to track loss.

This measure re
ects the ability of a system to maintain a target track once it is

acquired. We will de�ne track loss, with respect to the MMHTT algorithm, as the

event characterized by the rejection of the last candidate trajectory which is coincident
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with the true target trajectory.

An initial estimate of the average time to track loss can be obtained by analyzing

the MMHTT algorithm as a sequence of independent Bernoulli trials. Assuming

that the candidate trajectory set is su�ciently dense that at least one candidate

trajectory is always coincident with the target trajectory, the MMHTT algorithm

can be modelled as a sequence of independent experiments with probability (1��) of

detecting the target and probability (�) of missing the target. The expected number

of trials before the target is missed can then be obtained as the expected time to the

�rst success in a series of independent Bernoulli trials, where success is de�ned as

missing the target.

It is well known that the expected number of trials needed to obtain the �rst

success is

1

p

, where p is the probability of success [92]. Thus the average number

of multistage hypothesis tests prior to track loss can be obtained in terms of the

probability of detection for a single candidate trajectory, as

E[# of tests] =

1

�

: (4:34)

The average time to track loss can then be estimated as the product of the average

number of tests prior to track loss and the expected length of a multistage hypothesis

test in the presence of a target to obtain

E[time to track loss] =

1

�

E(T j H

1

): (4:35)

A more accurate estimate can be obtained by directly calculating the expected

time to track loss for a single candidate trajectory with re-initiation of the multistage

hypothesis test when the target is con�rmed present. De�ning �

TL

(i) as the proba-

bility of track loss in the i

th

frame, the expected time to track loss can be computed

as

E[time to track loss] =

1

X

i=1

i�

TL

(i) (4:36)

where the probability that the track is lost in the i

th

frame is the probability that

the multistage hypothesis test accepts the target absent hypothesis in the i

th

frame.

A K-stage MSHT can only accept the target absent hypothesis in one of K stages.

Thus, in order for the MSHT to accept the target absent hypothesis in stage j, the

test must have been initiated in the (i� j)

th

frame.
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The probability of losing the track in the i

th

frame can be expressed as

�

TL

(i) =

K

X

j=1

�

H

0

j

(�)�

TI

(i� j); for � = f� j � 2 �

H

1

g (4:37)

where �

TI

(i) is de�ned as the probability of re-initiating the MSHT in the i

th

frame.

Now, consider the development of the target track as a sequence of initiated and

con�rmed target trajectory segments. The �rst MSHT initiated in Frame 1, can

only terminate in one of K frames including Frame 1. The probability that the test

terminates and a new test is initiated can be computed for each frame j, (1 � j � K),

as

�

H

1

j

(�); for � = f� j � 2 �

H

1

g: (4:38)

For subsequent frames, the probability that the current multistage hypothesis test

terminates and a new test is initiated, �

TI

(i) is the probability of accepting the target

present hypothesis in the i

th

frame. A K-stage MSHT can only accept the target

present hypothesis in one of K stages. Thus, in order for the MSHT to accept the

target present hypothesis in stage j, the test must have been initiated in the (i� j)

th

frame. Thus, the probability that a new test is initiated in the i

th

frame can be

recursively computed as

�

TI

(i) =

K

X

j=1

�

H

1

j

(�)�

TI

(i� j) for � = f� j � 2 �

H

1

g: (4:39)

Therefore, the expected time to track loss can be recursively estimated as

N

X

i=1

i

K

X

j=1

�

H

0

j

(�)�

TI

(i� j); for � = f� j � 2 �

H

1

g (4:40)

for large N , where �

TI

(i) is recursively computed by (4.39).

Note that the preceding analysis only evaluated the ability of the MMHTT algo-

rithm to track the target trajectory using a sequence of candidate trajectory segments

coincident with the true target trajectory. In practice, as discussed in section 4.2,

there is a signi�cant probability of accepting, as a segment of the true target trajec-

tory, those candidate trajectories which di�er from the true target trajectory only in

the last stage(s) of the MSHT. If the scope of the trajectory search for re-initiated

trajectories is not overly strict, there is a signi�cant probability that one of these
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candidate trajectories will detect the target in some later test stage. Thus, these

neighbouring candidate trajectories provide a measure of robustness against track

loss and an analysis of repeated candidate trajectory trees suggests an increase in the

expected time to track loss.

4.3.2 Performance of Repeated Candidate Trajectory Trees

Although the analysis of a single candidate trajectory or candidate trajectory tree

provides an adequate measure of the detection performance of the MMHTT algo-

rithm, an analysis of the dynamics of the repeated MSHT is required for a more

detailed analysis of the algorithm's tracking performance. In the following, the per-

formance analysis for a single candidate trajectory tree will be extended to analyze

the performance of successive candidate trajectory trees. The following analysis will

be restricted to an analysis of the candidate trajectories generated as a result of a

single initiated search for new target trajectories. Thus, the analysis will consider

the result of successive MSHTs generated by the �rst test but will not consider the

e�ects of concurrent tests for new targets.

In section 4.2 it was assumed that the trajectory of each target in the image

sequence is known and that the image observations y can be modelled as realizations

of random variables with one of two known probability distributions. Thus, given an

arbitrary set of target trajectories, a reference test target, and an initial position for

the initiation of the �rst candidate trajectory search, the results of section 4.2 can be

used to determine the probability that the MMHTT algorithm will accept the target

present hypothesis in each node of the candidate trajectory tree. Since a search is

initiated for an extension of each con�rmed candidate trajectory, the probability of

accepting the target present hypothesis at a given node is also the probability that a

trajectory search is initiated in that node.

Given that a candidate trajectory search is initiated at (x

i

; y

i

) in Frame i, the

probability that candidate trajectory t

x

i

;x

j

from (x

i

; y

i

) in Frame i to (x

j

; y

j

) in Frame

j is con�rmed, can be obtained from the performance analysis of a single candidate

trajectory tree.

Pr(accept t

x

i

;x

j

j test initiated at (x

i

; y

i

) in Frame i) = �

H

1

j�i

(�) (4:41)
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where � is known:

� = f�

i

j Y

i

� f

Y

(y

i

j �

i

); for Y

i

2 Y

t

x

i

;x

j

g: (4:42)

Since candidate trajectory t

x

i

;x

j

can be con�rmed if and only if a candidate trajectory

search is initiated at (x

i

; y

i

) in Frame i, the unconditional probability that candidate

trajectory t

x

i

;x

j

is con�rmed can be obtained as

Pr(accept t

x

i

;x

j

) = �

H

1

j�i

(�)Pr(test initiated at (x

i

; y

i

) in Frame i): (4:43)

Note that the probability that a test is initiated at (x

i

; y

i

) in Frame i is just the

probability that one or more of the candidate trajectories from some pixel (x

k

; y

k

) in

a previous Frame to (x

i

; y

i

) in Frame i, are con�rmed.

Pr(test initiated at (x

i

; y

i

) in Frame i) � �(x

i

) �

X

t

x

k

;x

i

Pr(accept t

x

k

;x

i

): (4:44)

Thus, an upper bound on the probability of initiating a search for a target trajectory

extension, at (x

i

; y

i

) in Frame i, can in principle be computed for every reachable

target location.

Given that a test for a new target trajectory is initiated at (x

1

; y

1

) in Frame 1,

(�(x

1

) = 1), the probability of initiating a search for an extension of this target tra-

jectory can be computed for each pixel (x

j

; y

j

) in Frame j of the candidate trajectory

search space as

�(x

j

) = �

H

1

j�i+1

(�): (4:45)

The probability of initiating a search for a target trajectory extension in subsequent

frames can then be computed using (4.44), by evaluating the �(x

i

) for each reachable

pixel in each subsequent frame. This calculation is computationally impractical for

more than a few frames. However, if the analysis is constrained to an evaluation

of a set of most probable pixels in each frame, one can still evaluate the dynamic

performance of the MMHTT algorithm for an arbitrary target scenario.

Two constraints are useful for bounding the calculation of propagation probabili-

ties for repeated MSHTs. The �rst constraint is to inhibit the calculation of con�rma-

tion probabilities for pixels (x

i

; y

i

) where �(x

i

) is less than a speci�ed error tolerance.

The second constraint is to inhibit the calculation of con�rmation probabilities for
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pixels (x

i

; y

i

) which do not have the test target in their candidate trajectory search

space. These constraints limit the evaluation of candidate trajectories to a set of

most probable candidates in a neighbourhood of the test target trajectory. For typi-

cal test designs, the probability of propagating a candidate trajectory in the absence

of target observations is small (P

FA

< 10

�5

) and the expected track length of a false

target trajectory in the image background is much less than the number of stages

in the MSHT. Thus, although the candidate trajectories which are ignored by the

imposition of these constraints have a �nite probability of ocurring, that probability

is typically quite small.

Given an estimate of the probability that a trajectory search is initiated for every

pixel in a neighbourhood of the test target trajectory, and knowledge of which pixels

contain a target, the probability of accepting a false alarm in each image frame can

be bounded by the sum of the probabilities of accepting a false alarm in each pixel of

the frame:

�

i

�

X

x

�(x); for each image frame i: (4:46)

Similarly, the probability of detecting any of the known targets in each image frame, is

simply the probability that a candidate trajectory is accepted at the target's current

pixel location:

Pr(detecting the target at x

i

in Frame i) � �(x

i

): (4:47)

In addition, a rough upper bound for the probability of following the test target

can be obtained by constructively computing the probability that at least one of the

candidate trajectories at any given stage is coincident with the test target trajectory.

Given the position of the test target x

i

in image frame i, the probability that at

least one of the candidate trajectories in the algorithm's undecided trajectory list is

coincident with the target can be bounded by

X

t

x

k

;x

i

�

H

;

i�k

(�)�(x

k

) (4:48)

In general, this upper bound for the probability of following the target is more opti-

mistic than the measures of the expected time to track loss derived in section 4.3.1.

This re
ects the robustness to track loss provided by maintaining and evaluating

multiple candidate trajectories which are close to the true target trajectory.
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4.3.3 A Sample Tracking Performance Analysis

As an example of the target tracking analysis presented in sections 4.3.1 and 4.3.2,

the probability of following a point-source target, in a Gaussian noise background,

will be analyzed. A 3-stage truncated SPRT, with a nominal detection probability of

0.9, was designed for a constant intensity target with a SNR of 12 dB. An analysis of

the resulting test yields an actual probability of detection of 0.9795 and an expected

test length, in the presence of a target, of 2.04 image frames.

As discussed in section 4.3.1, an initial estimate of the average time to track loss

is given by (4.35),

1

�

E(T j H

1

) = 98 frames: (4:49)

A more accurate estimate of 101 image frames is obtained by recursively estimating

the expected time to track loss for a single candidate trajectory using (4.40). This is

a conservative bound on the overall tracking performance of the MMHTT algorithm.

In practice, there is a small but signi�cant probability that, in the event of track loss

along the true target trajectory, one of the neighbouring candidate trajectories in the

candidate trajectory set will be accepted by the MSHT algorithm and the true target

trajectory will be detected in a subsequent search for a target trajectory extension.

As discussed in section 4.3.2, a rough upper bound for the probability of follow-

ing a target can be obtained by analyzing the performance of repeated candidate

trajectory trees. The results of an analysis of the probability of following a target,

using the 3-stage test described above, are plotted in �gure 4.3. The lower curve is

the conservative bound obtained by estimating the probability of following a target

using (4.40) and the upper curve is the rough upper bound obtained by an analysis

of repeated candidate trajectory sets, using (4.48). It was assumed that the target

followed a linear trajectory with a constant velocity of 1 pixel/frame and that the can-

didate trajectory set was designed to evaluate all linear constant velocity trajectories

with a maximum velocity of 1 pixel/frame. Note that the actual performance of the

MMHTT algorithm is bounded by these two estimates. It is clear that the MMHTT

algorithm signi�cantly extends the length of the target trajectories detected by the

MSHT algorithm.
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Figure 4.3: The probability of following a target

The upper curve is for an analysis of repeated candidate trajectory trees.

The lower curve is for an analysis of a single repeated candidate trajectory.
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4.4 Summary

The performance analysis techniques presented in this chapter can only provide a

rough measure of the global detection and tracking performance of the MMHTT al-

gorithm for arbitrary target scenarios. The explicit evaluation of better bounds for

the algorithm's detection performance or an analysis of the algorithm's computational

requirements (e.g. expected number of candidate trajectories per stage) is a di�cult

problem confounded by the statistical dependence of the candidate trajectories in the

candidate trajectory tree. Although the image observations along any single candi-

date trajectory are independent, the tree-structure of the candidate trajectory set

introduces a statistical dependence between candidate trajectories which are children

of the same tree node. In principle, exact expressions for the performance measures

could be evaluated by computing the joint probability distribution of the image ob-

servations. However, the e�ort involved outweighs its relative value in the design of

an appropriate algorithm for a given target scenario.

Several important observations can however be drawn from the analysis presented

herin. First, the MMHTT algorithm preserves the detection performance of the

MSHT algorithm while extending the length of the detected target trajectories by an

order of magnitude for typical test designs. Second, candidate trajectory segments

which partially overlap the true target trajectory have a signi�cant probability of

being accepted by the MSHT algorithm. Although, these candidate trajectories are,

strictly speaking, false alarms they are su�ciently close to the true target trajectory

that they provide a measure of robustness to track loss and target manoeuvres. Fi-

nally, there is a trade-o� between minimizing the probability of missed detection to

maximize tracking performance and a minimization of the expected test length in the

absence of a target to minimize the computational cost of evaluating the candidate

trajectory sets.
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Chapter 5

Feature Detection and Tracking

A large number of algorithms, which compute the three-dimensional motion of a rigid

object from a set of n feature correspondences over m frames, have been proposed

[56,58,94{97]. However, relatively few researchers have addressed the problem of

automating the establishment of feature correspondences in a robust and computa-

tionally e�cient manner. The establishment of feature correspondences is confounded

by problems in feature detection which can lead to the disappearance of true features

and the appearance of false features in any image frame. Object occlusion, changes in

the relative imaging geometry and changes in scene illumination can lead to signi�cant

changes in the image feature observations and are a major source of correspondence

errors [98].

In the following, a system will be described for automating the establishment of

feature correspondences for objects moving against a stationary image background.

The proposed system is an application of the MMHTT algorithm, developed in Chap-

ter 3, to the detection and tracking of object feature points over an extended number

of image frames. The image preprocessing required to implement the MMHTT algo-

rithm is developed and applied to both real and synthetic image sequences. Finally,

the MSHT algorithm is applied to the sample image sequences as a qualitative indi-

cation of the potential performance of the MMHTT algorithm.
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5.1 Previous Work in Feature Correspondence

The standard approach to the feature correspondence problem is to detect features

in each image frame and then address the correspondence problem as a matching or

data association problem [99{103]. These algorithms rely on feature uniqueness and

location to resolve the correspondence problem without referring to the underlying

motion. If features are missing, false features detected, or the distance between dis-

tinct feature points is comparable to the expected feature displacement in subsequent

frames, the two-frame correspondence problem can be ill-posed.

Consequently, multiframe algorithms have been developed which exploit motion

continuity to solve the correspondence problem for temporally dense image sequences

[104{107]. These algorithms assume that the motion of imaged objects cannot change

instantaneously and thus, if the image sampling rate is su�ciently high, the motion

of the projected features on the image plane is smooth [104]. However, in an image

sequence with a dense set of features and/or in the presence of false feature detections,

the search for the smoothest path may lead to signi�cant correspondence errors.

Under these conditions the motion smoothness constraint is insu�cient to correctly

resolve the correspondence problem.

Feature detection and correspondence in a dense set of features has been addressed

by applying the MSHT algorithm to detect image features along short, linear trajec-

tories through several images [60, 108]. Although this multiframe detection approach

o�ers increased robustness to feature detection problems and provides implicit local

correspondence decisions, it fails to extend the detected feature trajectories. Conse-

quently, a heuristic feature path linking algorithm was proposed to produce the long

trajectories required for multiframe estimation of structure and motion.

Recently, Chang and Aggarwal identi�ed similarities between the correspondence

problem and the multitarget tracking data association problem. They posed the

feature correspondence problem as a joint problem in feature detection and estimation

[59]. Their algorithm combines statistical detection of two-dimensional line features

in the image plane with an application of the JPDA �lter to estimate the structure

and motion of three-dimensional lines [59].
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5.2 The Feature Point Correspondence Problem

The feature detection and correspondence problems are fundamentally decision prob-

lems. The detection problem is a decision between the two hypotheses

H

1

: I[x; y; t] is a feature point, and

H

0

: I[x; y; t] is not a feature point

and the correspondence problem is a decision between the two hypotheses

H

1

: I[x; y; t] and I[x

0

; y

0

; t

0

] are observations of the same object feature, and

H

0

: I[x; y; t] and I[x

0

; y

0

; t

0

] are not observations of the same object feature

The approach proposed herein is to unify the feature detection and correspondence

problems in a common decision framework using the MMHTT algorithm.

It is assumed that the imaged objects have surface markings whose projections

on the image plane are identi�able, whose locations can be accurately determined,

and that after appropriate image preprocessing the image pixel intensities can be

modelled as realizations of independent random variables from one of two probability

distributions

f

1

(I[x; y; t]) if the pixel is a feature point, or

f

0

(I[x; y; t]) otherwise.

Thus, the multiframe feature point detection and tracking problem can be de�ned

analogously to the MFTDT problem of Chapter 1.

Figure 5.1: Automated Feature Detection and Tracking System
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The remainder of this chapter is dedicated to the development of a signal and

data processing structure for automating the establishment of feature point corre-

spondences in a sequence of digital images (see �gure 5.1). This solution to the

correspondence problem builds on the work in [60], by replacing the original imple-

mentation of the MSHT algorithm with the MMHTT algorithm developed in Chap-

ter 3. The MMHTT algorithm enables the detection and tracking of feature point

correspondences over an extended number of image frames, obviating the need for

the heuristic feature path linking step in [60]. The resulting system combines the de-

tection power and e�ciency of the MSHT algorithm with the well-documented error

performance of a MHT approach to data association.

As in [60], the system described in this chapter is designed to detect and track

local extrema of the image intensity surface with a high Gaussian curvature. The

system accepts an image sequence with a stationary image background as input and

provides a set of feature trajectories as output. Each feature trajectory consists of a

set of feature positions in a subset of the image sequence.

As discussed in Chapter 1, this system structure can be divided into three pro-

cessing tasks:

1. image preprocessing,

2. feature detection, and

3. feature tracking.

The initial preprocessing is designed to compute features and optimize usage of the

system's limited computational resources. The remaining tasks are satis�ed by an

implementation of the MMHTT algorithm developed in Chapter 3. A sample of the

�rst two stages of the system output, for both real and synthetic images, is provided

to illustrate the potential for an application of the MMHTT algorithm.

5.3 Image Preprocessing

The goals of the initial image sequence preprocessing are to compute potentially

trackable features and detect regions of signi�cant inter-frame change. This is a data
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reduction step designed to optimize usage of the feature tracker's limited compu-

tational resources. These functions are applied to single images and are typically

suitable for implementation on special purpose hardware which can easily implement

these functions at the standard video frame rate.

5.3.1 Features

The key to a feature-based approach to image sequence analysis is the computation

or detection of appropriate features. The selection of appropriate features is both

task and data dependent. However, there are several design criteria which should be

considered.

Feature Selection Criteria:

1. Discriminability: The features should be designed to enhance detectability.

2. Localizability: It should be possible to accurately determine feature positions

in the image.

3. Robustness: Selected features should be robust to changes in the imaging envi-

ronment.

4. Sparseness: Selected features should be sparsely distributed to reduce track

crosscorrelation.

5. Computability: Feature maps should be simple to compute.

As an illustration of the MMHTT approach to the feature correspondence problem,

the system described herein is designed to detect and track the Gaussian curvature

features proposed in [60]. These features are critical points of the image intensity

surface with a high Gaussian curvature. It will be shown that these features are

simple to compute and that their position is well de�ned.

Computing Gaussian Curvature Features

Gaussian curvature feature points are local extrema of the image intensity surface

with a high Gaussian curvature. Gaussian curvature is a parametrization invariant
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measure of surface curvature de�ned as the product of the principal normal curvatures

[109]. Thus, computing these features is a two-step process. First, the local intensity

extrema are located and then the Gaussian curvature of the surface is evaluated.

The local intensity extrema are estimated by the extrema of a parametric surface

�t to the image intensity data in a local neighbourhood. The image intensities are �t

to a parabolic surface, because it has a unique critical point and a minimal number

of de�ning parameters. Although the parabolic surface is a crude �t to the image

intensity surface, it captures the gross characteristics of the surface and is more robust

to small 
uctuations in the value of any single pixel than a higher order model.

Given a local (2n + 1)� (2n + 1) neighbourhood of pixels centred on (x; y)

fI[x+ i; y + j] j j i j� n; jj j� ng (5:1)

the image intensity surface can be �t to a parabolic surface

z = ax

2

+ bxy + cy

2

+ dx+ ey + f (5:2)

by �nding the coe�cients a; b; c; d; e; f; which minimize

kAx�Gk

2

=

n

X

i=�n

n

X

j=�n

(ai

2

+ bij + cj

2

+ di+ ej + f � I(x+ i; y + j))

2

(5:3)

where x = [a b c d e f ]

T

, the k'th row of A is [i

2

ij j

2

i j 1], and (i; j) is given by the

k'th element of G: I[x + i; y + j]. This is a standard linear least squares problem

with solution

x = (A

T

A)

�1

A

T

G: (5:4)

SinceA is independent of the image intensities, it can be precomputed for a particular

neighbourhood. The 6 surface parameters a; b; c; d; e; f; can thus be obtained from

the output of 6 FIR �lters applied to the image neighbourhood.

Given the parabolic surface parameters, the next problem is to �nd the extrema

of the surface curvature. A standard theorem in multivariate calculus states that a

point (x

0

; y

0

) is a strict local minimum of z if the following conditions are satis�ed

[110]:

1.

�z

�x

(x

0

; y

0

) =

�z

�y

(x

0

; y

0

) = 0, and
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2. the Hessian matrix

2

6

4

�

2

z

�x

2

�

2

z

�y�x

�

2

z

�x�y

�

2

z

�y

2

3

7

5

is positive de�nite.

The �rst condition is satis�ed by (i; j) = (i

0

; j

0

), where

i

0

=

2cd�be

b

2

�4ac

; and

j

0

=

2ae�bd

b

2

�4ac

(5:5)

for a non-degenerative surface. Surfaces for which b

2

� 4ac = 0 are considered degen-

erate and have non-unique critical points (i.e. a fold: the extrema points form a line).

Reparametrizing the parabolic surface so the extrema is at the origin yields

z = ai

02

+ bi

0

j

0

+ cj

02

+ f

0

; (5:6)

where

f

0

=

cd

2

� bde+ ae

2

+ b

2

f � 4acf

b

2

� 4ac

: (5:7)

The Hessian matrix H is now a function of three parameters:

H =

2

6

4

2a b

b 2c

3

7

5

(5:8)

The Hessian is positive de�nite if and only if

1. a > 0, and

2. detH = 4ac� b

2

> 0

Similar theorems state that (x+ i

0

; y + j

0

) is a strict local maximum if and only if

1. a < 0, and

2. detH = 4ac� b

2

> 0

and (x+ i

0

; y + j

0

) is a saddle point if detH < 0. Note that the determinant of the

Hessian matrix is zero for a degenerate surface implying that the surface is a function

of a single variable.

The Gaussian curvature of a surface is the product of the principal normal cur-

vatures of the surface at any point (x

0

; y

0

) on the surface. The principal normal

136



curvatures at a point are the eigenvalues of the Hessian matrix evaluated at that

point. Thus, the Gaussian curvature is equal to the product of the eigenvalues of the

Hessian matrix or by a standard theorem of linear algebra, equal to the determinant

of the Hessian matrix H.

Thus, every image in the sequence can be processed for Gaussian curvature fea-

tures as a simple function of the output of six digital �lters. These �lters compute

the surface parameters of parabolic surface patches �t to the image intensities in local

neighbourhoods of the image. The remaining problem is how to generate a feature

image suitable for input to the MMHTT algorithm.

In [60], Debrunner proposed the generation of two feature maps to be processed

in parallel. One feature map consists of local intensity maxima with high Gaussian

curvature and the second feature map consists of local intensity minima with high

Gaussian curvature. Each feature map is generated as follows:

1. A parabolic surface is �t to a neighbourhood of each interior pixel in the image.

2. The location of the �tted surface critical point is computed as a simple function

of the �tted surface parameters.

3. The Hessian of the �tted surface is evaluated at the critical point.

4. If the Hessian is positive de�nite or negative de�nite, the Gaussian curvature

K is computed.

5. the value of the (x + i

0

; y + j

0

) pixel in the appropriate feature map is then

incremented by

K

1+i

2

0

+j

2

0

.

Note that the contribution of an image neighbourhood to the feature map decays as

a function of the inter-pixel distance between the centre of the �tted surface and the

centre of the pixel containing the surface extremum. Thus, each feature map will

have pixels with a high intensity where the surface �t has a large Gaussian curvature

and low intensity pixels in regions with less pronounced variations in image intensity.

In practice, this procedure isolates local intensity peaks and corners which may be

due to the physical re
ectivity of the imaged objects, as desired, or due to spurious

photometric e�ects (e.g. shadows and specular re
ections).
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5.3.2 Change Detection

The second component of image preprocessing for feature detection and tracking is

the detection of regions of signi�cant inter-frame change. This is an auxiliary region

of interest process, as discussed in section 3.3.1, which reduces the computational

cost of feature detection and tracking by identifying regions of each image which

are most likely to contain the moving objects of interest. Such a process could be

implemented in parallel with the computation of image feature maps for a real-time

implementation.

In the following, a change detector is used to separate moving targets from the

stationary background. Ideally, the change detector should be robust to camera noise

and changes in illumination. Previous change detection algorithms based on frame

di�erences are sensitive to noise and yield a poor segmentation [111, 112]. Other

approaches based on adaptive reference images require a good initial estimate of the

stationary background [112, 113]. However, a recent adaptive technique developed by

Karmann et al. [111] can cope with illumination changes, system initialization in the

presence of moving objects and previously stationary objects which begin to move.

This technique generates an adaptive reference image from the image sequence which

captures the stationary image background and enhances the detectability of moving

objects.

The following is a brief outline of Karmann's technique [113]:

Signi�cant inter-frame changes are detected by comparing the absolute grey level

di�erence of an incoming image frame and an adaptive reference image to a noise-

adaptive threshold, T

na

.

ChangeImage[x][y] = 1; if jI[x; t]�R[x; t]j > T

na

= 0; otherwise

(5:9)

The current reference image, R(x; t), is estimated from the image sequence using

a simple Kalman �lter.

R[x; t+ 1] = R[x; t] +K[x; t](I[x; t]�R[x; t]) (5:10)
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where the Kalman gain K[x; t] is computed as

K[x; t] =

V [x; t]

(I[x; t]�R[x; t])

2

+ V [x; t]

(5:11)

and V [x; t] is a measure of the local image noise power estimated by

V [x; t+ 1] = (1�K[x; t]) + S[x; t] (5:12)

with system noise variance S[x; t].

Following Donohoe [112], the decision threshold T

na

is derived from the classical

likelihood ratio detector,

Pr(I[x; t] j H

1

)

Pr(I[x; t] j H

0

)

8

>

<

>

:

� T

na

) choose H

1

< T

na

) choose H

0

(5:13)

which for uniformly distributed target intensities and Gaussian noise statistics, yields,

T

na

=

v

u

u

t

2V ln

k

�

p

2�V

(5:14)

where k is the number of image grey levels, � is the a priori probability ratio of target

pixels to background pixels, and V is the average of V [x; t] over the entire image.

5.4 Feature Detection and Tracking Experiments

In the following, a potential application of the MMHTT algorithm to the feature

detection and tracking problem will be investigated. In principle, the algorithm could

be designed to detect certain image features directly from the raw image sequence data

and/or multiple feature types could be tracked by parallel versions of the algorithm.

However, in the following it will be assumed that the feature map is obtained from

the Gaussian curvature �lter described in the previous section and that the MMHTT

algorithm is applied to each feature map separately.

The MSHT algorithm was applied to the feature detection and tracking problem

in [60]. However, as discussed previously, the short, detected feature paths are insu�-

cient for motion estimation. Consequently, a heuristic feature path linking algorithm

was proposed in [60] to form extended feature trajectories from the short, linear path
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segments detected by the MSHT algorithm. In the following, the MMHTT algorithm

is proposed as a replacement for the MSHT algorithm to both detect and track image

features over an extended number of image frames.

As discussed in the prelude to Chapter 3, the MMHTT algorithm assumes that

the input image observations, after preprocessing, satisfy (2.12) with independent

observations y such that

f

Y

(y j �) =

Y

y2y

f

Y

(y j �) (5:15)

and that the target or feature point satis�es the point-source target model of (2.3).

Thus, the �rst task in designing an appropriate MMHTT algorithm for the detection

and tracking of the Gaussian curvature features described in section 5.3.1 is to ascer-

tain the probability distribution of the image observations conditioned on each of the

target hypotheses H

0

and H

1

.

In [60], the Gaussian curvature feature map observations were modelled as Gaus-

sian random variables with a uniform variance �

2

H

1

: Y � N(�; �

2

)

H

0

: Y � N(0; �

2

):

(5:16)

This choice was motivated by a desire to utilize the test threshold design procedures

in [40] and Debrunner admits that the statistical properties of the Gaussian curvature

feature maps are not truly in accordance with the model. However, reasonable results

were obtained in [60] by estimating �

2

with an empirically determined noise variance

for the feature observations. This approach will be maintained in the following ex-

periments.

The results presented herein are not exact quantitative measures of the algorithm's

tracking performance. Rather, they are a qualitative indication of the potential for

tracking Gaussian curvature features with the MMHTT algorithm in three di�erent

imaging environments. Unfortunately, a true qualitative appreciation of the results is

only possible in a dynamic medium. However, the results presented here do demon-

strate the potential for an application of the MMHTT algorithm to detecting feature

trajectories.

In the following, results will be described for one synthetic and two real image

sequences. The individual frames of the synthetic sequence were rendered using the
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ray-tracing software RADIANCE [114]. The object animation in the synthetic se-

quence is the result of an animation driver for RADIANCE developed by the author,

using a motion model described by Young and Chellappa [115]. The video image

sequences were digitized at 60 �elds/sec., using a Panasonic WV-BD400 CCD video

camera.

Four sample images from each sequence are presented. The images have a 256�256

pixel resolution with 255 grey levels. Each image is a sample of the results after a

di�erent stage in the sequence of processing steps.

� Top Left: Image Frame of the Original Sequence.

� Top Right: Feature Image Frame.

� Bottom Left: Image Frame After Change Detection.

� Bottom Right: Final Set of Detected Candidate Trajectories.

5.4.1 Synthetic Image Sequence

The synthetic sequence in Images (1-4) depicts a rotating box in a synthetic lab with


uorescent lights. The box was tumbling freely in space with a constant translational

acceleration and a rotation with constant precession. The feature frame in Image 2

clearly shows the extraction of curvature features along the edges of the `real' box

and the `re
ection' box in the 
oor. Features along the edges of the walls and the

lights are also extracted.

The background of the synthetic sequence is easily obtained by rendering one

frame without the box. This corresponds with the case where a good reference frame

is available for the change detector. If the change detector can observe the stationary

background environment before moving targets enter the �eld of view, it greatly

enhances detection performance. Note that the change detector correctly segments

the moving box from the background without error.

In the �nal frame, Image 4, the paths of the detected trajectories are displayed.

The algorithm correctly tracks the corners of the tumbling box. This performance is
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more evident in a dynamic medium where one can observe the overlaid trajectories

following the corners of the box in the original sequence.

5.4.2 Real Image Sequences

The �rst real image sequence is of a translating stack of Sun workstation boxes with

the logo clearly visible. This sequence was taken at night with the CCD camera

described previously. Contrary to expectations, the lighting conditions in the lab-

oratory, with 
uorescent ceiling illumination at night, were not homogeneous. The

extracted feature frames for the real sequences are much denser than those in the syn-

thetic case. Again, the curvature features appear along distinct physical and contrast

edges and corners in the image sequence. Particularly strong features are extracted

for the top corners of the Sun box and along the arm of the demonstrator.

In this sequence, the change detector was not allowed a previous view of the

stationary environment. However, it successfully adapted to the moving box and the

reference image rapidly converged to the true background. The moving Sun boxes

and the demonstrator's arm were clearly segmented. The change detector did not

isolate the long box used to push the Sun boxes. In the �nal frame, Image 8, the

detected trajectories for the corners of the Sun boxes and various points along the

demonstrator's arm and the Sun logo clearly indicate a translational motion.

The second image sequence is an extremely challenging one to analyze. The

sequence was taken during the day and a puddle of sunlight from a window just to

the right of the image is clearly visible on the 
oor beneath the chair. The chair

was translating and rotating as it moved from right to left. The rapid rotation of

the chair led to the disappearance of most of the curvature features on the surface of

the chair. The chair itself presents smooth, textured surfaces and thus does not have

any easily detectable Gaussian curvature features. The rapid changes in illumination,

poor contrast and lack of strong features in this image provide signi�cant challenges

to a feature tracking algorithm.

The features in Image 10 are much harder to detect than those in Image 2 and

Image 6. In fact, the chair is barely discernible in Image 10. Strong features are

however detected in the stationary image background. Again, the change detector
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was not switched on during the object's motion and was challenged to compensate

for the moving object and the rapid changes in illumination. The change detector

successfully isolated the moving chair, although it took much longer for the reference

image to converge towards the true background. The e�ects of the sunlight are

also visible as large vertical bands across the chair in Image 11. Some of the low

observable features were tracked and their �nal trajectories are displayed in Image

12. This sequence demonstrates the algorithm's ability to cope with missed detection.

Although the features on the surface of the chair were weak, the algorithm managed

to track parts of the chair across the room.

5.5 Summary

The experiments presented in the preceding section provide a qualitative indication

of the potential of the MMHTT algorithm for detecting and tracking the Gaussian

curvature features proposed in [60]. The success of the MSHT algorithm in detecting

short, feature paths suggests that an application of the MMHTT algorithm could im-

prove upon the performance of the MSHT algorithm in [60] by extending the detected

feature paths. The introduction of the change detection process in section 5.3.2, as

an auxiliary region of interest process (see section 3.3.1) improves the performance of

either the MSHT or the MMHTT algorithm by focusing the system's resources on im-

age regions containing the moving objects of interest. The result is a system structure

with the potential for automating the establishment of feature point correspondences

for the estimation of three-dimensional structure and motion from extended image

sequences.
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Chapter 6

Summary

The research described in this document has culminated in the development of a new

algorithm for the joint detection and tracking of point-source targets in a sequence

of digital images. The novelty of this algorithm is the incorporation of a sequen-

tial detection algorithm in a `track-oriented' multiple hypothesis tracking algorithm.

The target detection algorithm is used to improve the performance of the tracking

algorithm by e�ciently combining the target detection and track initiation functions.

Conversely, the output of the tracking algorithm is used to improve target detection

e�ciency by controlling the initiation of new target searches. The resulting algorithm

transforms an appropriately processed image sequence into a set of detected target

tracks suitable for target state estimation or the estimation of three-dimensional struc-

ture and motion.

The analysis of the detection and tracking performance of the MMHTT algorithm,

in Chapter 4, suggests that the MMHTT algorithm preserves the detection perfor-

mance of the MSHT algorithm while signi�cantly extending the length of the detected

target trajectories. Although the performance analysis in Chapter 4 is restricted to

an evaluation of coarse upper bounds for the detection error probabilities, it signi�-

cantly extends the performance analysis of the original MSHT algorithm in [40]. The

development of a more re�ned performance analysis is confounded by the magnitude

of the branching process for non-trivial candidate trajectory trees and the statistical

dependence of image observations from candidate trajectories which share a common

node in the candidate trajectory tree.
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To recapitulate, the main contributions of this research have been:

1. A new implementation of the Multi-Stage Hypothesis Test algorithm enabling

(a) a computationally e�cient MSHT test initiation procedure, and

(b) the incorporation of MSHTs in a multiple hypothesis tracking algorithm.

2. The development of a new multiple hypothesis tracking algorithm which

(a) exploits theMSHT test statistic as a metric for track hypothesis evaluation,

(b) and employs the MSHT algorithm for target detection and track initiation.

3. An analysis of the performance of the MMHTT and MSHT algorithms including

(a) the detection error probabilities for trajectories with non-iid observations,

(b) the detection error probabilities for a candidate trajectory set,

(c) the detection error probabilities for the MMHTT algorithm,

(d) performance bounds for the average time to track loss,

4. An application of the MMHTT algorithm to feature detection and tracking.

6.1 Future Work

Several promising avenues exist to extend the current research, including:

A real-time, parallel implementation of the MMHTT algorithm.

A challenging problem would be to develop a parallel implementation of the MMHTT

algorithm for real-time implementations. The new implementation of the MSHT al-

gorithm behaves as an array of independent detectors with local communications

which may hold promise for an e�cient parallel implementation of the target detec-

tion and track initiation functions at the image sensor frame rate. The generation

and evaluation of track hypotheses could then be implemented on a general purpose

processor which polls the local detectors for track con�rmations. Several researchers

have investigated parallel architectures for weak target detection and tracking in im-

age sequences [43, 38].
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A test design procedure for the generalized Gaussian noise distribution.

For the experimental image sequences described in section 5.4, an analysis of the

feature maps generated by Debrunner's Gaussian curvature feature generator suggests

that the image observations could potentially be better modelled as random variables

with a generalized Gaussian probability distribution [64]
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This model has also been successfully employed for target detection and tracking in

IR imagery, with the dynamic programming algorithm [36, 34].

As discussed in section 3.1.2, the truncated SPRT, used to evaluate the candidate

trajectories in the MMHTT algorithm, is designed as a mixture between a SPRT and

a classical FSS test. The SPRT test thresholds are independent of the actual proba-

bility distribution of the image observations, and depend solely on the desired error

probabilities of the test. However, the design expressions for the FSS test threshold �

and the truncation stage K in section 3.1.2 assumed that the image observations were

distributed as Gaussian random variables (see (3.18) and (3.19)). A design procedure

for K and � for generalized Gaussian random variables would signi�cantly increase

the performance of the MMHTT algorithm for some applications.

Add a model of target dynamics to the evaluation of track hypotheses

The addition of a target dynamics term in the ranking metric for the track hypotheses

o�ers an additional constraint for incorporating a priori information to improve the

tracking performance of the MMHTT algorithm. The addition of an explicit model of

the target dynamics would also allow for a fair comparison of the performance of com-

peting approaches to target detection and tracking such as the dynamic programming

algorithm which have successfully exploited a model of target dynamics.
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An analysis of the computational requirements of the MMHTT algorithm.

As discussed in Chapter 1, the primary measure of performance for a multitarget de-

tection and tracking algorithm is its computational e�ciency in achieving a speci�ed

level of detection and tracking performance. Consequently, an ability to estimate the

computational requirements of the MMHTT algorithm for arbitrary target scenarios

would enable intelligent performance/computation trade-o�s to be included in the de-

sign. An analysis of the expected number of undecided candidate trajectories would

enable an estimate of the algorithm's computational requirements as a function of:

� the memory required to implement the undecided trajectory data structure,

� the memory required to implement each track hypothesis cluster,

� the memory required to store the candidate trajectory set lookup-table,

� and the number of processor operations required for each algorithm function.

.

An extension of the MMHTT algorithm to multi-valued image data.

Multispectral image sequences are the subject of recent research in weak target detec-

tion and tracking. It has been shown that the incorporation of spectral information

can signi�cantly improve the performance of algorithms designed for weak target de-

tection [25, 71, 39]. An extension of the MMHTT algorithm for multi-valued image

data would extend its range of application to include multispectral image sequences.
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Symbols and Abbreviations

List of Abbreviations

CCD charge-coupled device

CFAR constant false alarm rate

DPA dynamic programming algorithm

dB decibels

ECM electronic countermeasures

EO electro-optical

FLIR Forward Looking Infrared

FOV �eld-of-view

FSS �xed sample size

iid independent and identically distributed

IRST Infrared Search and Track

JPDA joint probabilistic data association

MFTDT Multiframe Target Detection and Tracking

MHT Multiple Hypothesis Tracking

MMHTT Multiple Multistage Hypothesis Test Tracking

MSHT Multi-Stage Hypothesis Test

MTT multi-target tracking

NN nearest-neighbour

PDA probabilistic data association

pdf probability distribution function

psf point spread function

RMTI recursive moving target indicator
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ROC Receiver Operating Characteristic

SB-MHT Structured Branching Multiple Hypothesis Tracking

SNR signal-to-noise ratio

SPIE Society of Photo-Optical Instrumentation Engineers

SPRT sequential probability ratio test

SSTS Space-based Surveillance and Tracking Systems
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List of Symbols

A(t) time-varying signal amplitude

â sequential probability ratio test upper threshold

a multistage hypothesis test upper threshold

a vector of multistage hypothesis test upper thresholds

^

b sequential probability ratio test lower threshold

b multistage hypothesis test lower threshold

b vector of multistage hypothesis test lower thresholds

b[x; y; t] discrete sample of the imaged background scene radiance

b[x; t] discrete background image sequence

^

b[x; t] discrete background image sequence estimate

b vector of samples of the imaged background scene radiance

C

k

k

th

track hypothesis cluster

C

t

k

log-likelihood ratio of prior probabilities for candidate trajectory t

k

C

T

k

log-likelihood ratio of prior probabilities for hypothesized target track T

k

c

0

; c

1

truncated sequential probability ratio test weights

D observation update

D

k

observations in the k

th

track hypothesis cluster

d detected target observation

d() photodetector response function

d

2

distance between two signal vectors

G number of frames in a dynamic programming stage

H

NT

new target hypothesis

H

OT

old target hypothesis

H

0

target absent hypothesis

H

1

target present hypothesis

H

l

data association hypothesis l

I(x; y; t) time-varying optical image

I[x; y; t] digital image sequence

I

b

(x; y; t) time-varying background scene radiance

I

i

(x; y; t) time-varying optical image incident on the image sensor

153



I

r

(x; y; t) apparent time-varying scene radiance

K truncation stage of a truncated sequential probability ratio test

L() likelihood ratio function

L

t

candidate trajectory score function

L

T

track score function

L

H

global tracking hypothesis score function

N(�; �

2

) Gaussian probability density function with mean � and variance �

2

N [j; k; l] discrete noise process

n[x; y; t] discrete sample of the imaging noise process

n vector of discrete noise samples

?n vector of residual noise samples after background clutter suppression

n

SN

shot noise process

n

WB

wide-band noise process

P

FA

probability of false alarm

P

D

probability of detection

Pr(x) probability of x

(p; s; d) (position, speed, direction)

p(x; y) optical point spread function

q() sensor quantization function

R

3

three-dimensional space of real numbers

R

p

V

image detector responsivity

r

max

maximum radius of target velocity annulus

r

min

minimum radius of target velocity annulus

r

o

number of operations required to evaluate L()

S Kalman �lter covariance matrix

S() merit function

s vector of discrete signal samples

st() state transition function

T target track

T

opt

optimal candidate target track

t candidate target trajectory
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ts dynamic programming target state

t[x; y; t] discrete sample of the imaged target radiance

t target image

v target velocity

v

min

minimum target velocity

v

max

maximum target velocity

�t detector integration period (image exposure)

w

j;k;l

fraction of the total, single exposure target energy

�x;�y detector pixel dimensions

x discrete image pixel coordinates [x,y]

(x

0

; y

0

) target trajectory origin

(x

s

; y

s

) detector array sampling point

(x

n;j

; y

n;k

) relative o�set coordinates in tier n of the candidate trajectory set

(x(t); y(t)) time-varying target position or target trajectory

Y random image observation

Y random vector of image observations

Y

t

k

random vector of image observations along the k

th

candidate trajectory

Y

T

k

random vector of image observations along the k

th

hypothesized target track

Y

T

i

;k

random vector of image observations along the i

th

hypothesized target track

in the k

th

cluster

Y




random vector of image observations along the candidate trajectories

in the undecided trajectory list 


y realization of Y

y set of received image observations

f

Y

(y j �) joint pdf of Y conditioned on the parameter vector �

Y � f() random variable Y has pdf f()

� probability of false alarm

�

SPRT

probability of false alarm assigned to the sequential test

�

FSS

probability of false alarm assigned to the truncation test

� probability of missed detection

�

SPRT

probability of missed detection assigned to the sequential test
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�

FSS

probability of missed detection assigned to the truncation test

�

0

decision region corresponding with an acceptance of H

0

�

1

decision region corresponding with an acceptance of H

1


 target occlusion factor

�(y) decision rule

�(x; y) spatial impulse function

�

FT

expected number of false tracks

� mean

�

I

i

average image intensity on the sensor focal plane


 the set of candidate trajectories in the current undecided trajectory list

�() standard normalized Gaussian probability distribution function

�

�1

inverse of �

�

2

variance

� decision threshold

�

NT

new target decision threshold

� parameter vector of the joint pdf of Y

� the set of all possible values of �

�

H

0

the set of values of � conditioned on H

0

�

H

1

the set of values of � conditioned on H

1
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