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Using Linear Dispersion
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Abstract—To improve performance of orthogonal frequency
division multiplexing (OFDM) for fading channels, this paper
proposes increasing frequency and time diversity using linear
dispersion codes (LDC-OFDM). Methods of LDC-OFDM pro-
cessing are proposed for both zero-padding (ZP) and cyclic-prefix
(CP) type guard intervals. A two-step-estimation (TSE) decoding
strategy is proposed that decouples symbol estimation from LDC
decoding. This paper analyzes the upper bound diversity order
of LDC-CP-OFDM, which is equal to the full diversity order
available in the channels. A criterion for full frequency-time
diversity design is derived, a rate-one code is provided and
performance is examined through simulations. This paper also
investigates LDC-CP-OFDM and LDC-ZP-OFDM performance
under imperfect channel estimation and low complexity receiver
structures, respectively. In addition, TSE is shown to have
performance close to that of full complexity one-step estimation
(OSE).

Index Terms—Linear dispersion codes, OFDM, diversity,
COFDM, equalization, signal estimation, MMSE, SINR.

I. INTRODUCTION

IN recent years, multicarrier communications systems, es-
pecially those employing orthogonal frequency division

multiplexing (OFDM) [1], have received increasing attention
for high-data-rate communications in frequency selective fad-
ing environments [2]. In practical OFDM system design, it
is important to notice that uncoded OFDM cannot provide
the same order of diversity as uncoded single-carrier systems
in severe frequency-selective fading environments, since the
frequency responses of channel space branches differ from
one another. One technique to mitigate the above problem is
to combine interleaving and forward error correction across
all subchannels at the price of reduced bandwidth efficiency,
i.e., coded OFDM (COFDM) [3]–[5].

Coding rate is a critical issue related to bandwidth efficiency
for high-data-rate transmission. In conventional COFDM, the
coding rate is typically less than one, and achieving appro-
priate trade-offs between coding rate and error probability
is critical to the system design. As a recent alternative to
error control coding, linear constellation precoding has been
combined with OFDM to maximize achievable frequency
diversity and coding gain [6]. However, LCP-OFDM is not
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able to exploit time diversity over different OFDM blocks in
the channels.

Recently, Hassibi and Hochwald proposed a high-rate
space-time coding framework, known as linear dispersion
codes (LDC) [7], which can support arbitrary configurations
of transmit and receive antennas. These LDC are designed to
optimize the mutual information between the transmitted and
received signals. This paper proposes and analyzes a new high-
rate LDC approach to jointly achieve both frequency diversity
and time diversity (LDC-OFDM).

The paper is organized as follows: LDC is defined in Section
II. In Section III, the construction of an LDC-OFDM block
is proposed. The proposed TSE based LDC-OFDM system is
discussed in Section IV, and the proposed receiver structure
is illustrated. An analytical discussion of diversity properties
of LDC-OFDM is given in Section V, and then a rate-one
full diversity LDC-OFDM design is provided. Performance
analysis and comparison is presented in Section VI.

The following notation is used:(·)† denotes matrix pseu-
doinverse, (·)T matrix transpose, (·)H matrix transpose con-
jugate, IK denotes identity matrix of size K × K , 0m×n

denotes zero matrix of size m×n, A⊗B denotes Kronecker
(tensor) product of matrices A and B, Cm×n denotes a
complex matrix with dimensions m × n, and FM denotes
the discrete Fourier transform (DFT) matrix, representing the
M -point fast Fourier transform (FFT) with entries, [FM ]a,b =(
1/

√
M

)
exp (−j2π(a − 1)(b − 1)/M) .

II. LINEAR DISPERSION CODING AND ITS MATRIX FORM

A. Definition of Linear dispersion codes

Assume the data sequence has been modulated using
complex-valued symbols chosen from an arbitrary, e.g. r-PSK
or r-QAM, constellation. A linear dispersion code (LDC),
SLDC , was first defined for multi-input, multi-output (MIMO)
systems with M transmit antennas, N receive antennas, T
channel uses and Q source constellation symbols as [7]

SLDC =
Q∑

q=1

αqAq + jβqBq (1)

where the LDC matrix is SLDC ∈ CT×M , Aq ∈
CT×M ,Bq ∈ CT×M , q = 1, ..., Q are called dispersion ma-
trices, which transform data symbols into a space-time matrix.
The constellation symbols are defined by sq = αq + jβq, q =
1, ..., Q.

This paper applies LDC to multicarrier systems, and the
data symbol coding rate of LDC in such systems is defined
as Rsym

LDC = Q
MT .
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Fig. 1. A LDC-OFDM block in the time-frequency plane.

B. A subclass of LDC and corresponding matrix form

Without loss of generality, we consider a special subclass
of dispersion matrices with the constraints

Aq = Bq, q = 1, ..., Q. (2)

Define the vec operation on m × n matrix X as

vec (X) =
[[

[X]:,1,

]T
, ...,

[
[X]:,n

]T ]T
(3)

where [X]:,i is the ith column of X.
Using (2) and (3), we transform (1) into

vec(SLDC) = GLDCs, (4)

where

GLDC = [vec(A1), ..., vec(AQ)] (5)

and s = [s1, ..., sQ]T . For general dispersion matrices, the
following development holds but the definition of GLDC

changes.

III. PROPOSED LDC-OFDM BLOCK CONSTRUCTION

Let there be NC subcarriers in one OFDM block. One
LDC-OFDM block, illustrated in Figure 1, consists of T
adjacent OFDM blocks. An LDC-OFDM system includes D
LDC codewords, each with LDC matrices occupying NF (i)

subcarriers and T OFDM blocks ∈ CT×NF (i) , i = 1, ..., D,

with
D∑

i=1

NF (i) = NC . In OFDM systems, since the number

of subcarriers is typically much larger than the number of
antennas in space-time MIMO systems, the proposed LDC-
OFDM system allows for freedom to choose larger dispersion
matrices as well as exploits low correlation across OFDM
subcarriers.

One LDC-OFDM block is organized into the ma-
trix SLDC−OFDM of size NC × T , SLDC−OFDM =[
s(1)
OFDM , ..., s(T )

OFDM

]
, where s(k)

OFDM is the k-th OFDM
block symbol vector of size 1 × NC , and represents the

transmitted complex symbol vector before inverse Fourier
transformation (IFFT) in the transmitter for the kth OFDM
transmitted block. Elements s(k)

OFDM consist of all the D row
vectors S(i)

LDC(k,.), i = 1, ..., D, where S(i)
LDC(k,.) ∈ C1×NF (i)

is the k-th row of the i-th LDC matrix codeword S(i)
LDC

in a single LDC-OFDM block. While S
(i)
LDC(k,.) occupies

NF (i) subcarriers, it is not necessary that these subcarriers
be spectrally adjacent.

IV. TSE BASED LDC-OFDM

A. One step estimation

Previously, LDC has been proposed for MIMO systems [7],
[8]. Here, the receiver combines LDC decoding and symbol
estimation, which we denote as one-step-estimation (OSE).
Mathematically, an OSE system may be formulated as

y = Hs + v, (6)

where y, s, and v are the received signal vector, source
data symbol vector, and additive noise vector, respectively.
The equivalent channel matrix, H, is a function of dispersion
matrices and fading channel matrices for all channel uses. To
decode a single system block, it is necessary to calculate the
equivalent channel matrix H, which is typically large in size
and results in high complexity, particularly for the case where
an LDC block of symbols includes multiple LDC codewords.
Current LDC decoding approaches use OSE and non-linear
maximum-likelihood or sub-optimal sphere decoding [7], [8]
and assume constant channel coefficients over the duration of
one LDC codeword. Besides complexity, the OSE approach
requires channel estimation that is a function of both fading
gains and LDC coefficients to be decoupled and estimated,
which is difficult to acheive.

B. Two step estimation and its necessary condition for LDC
decoding

To simplify channel estimation and maintain diversity at
reduced complexity, a two-step estimation (TSE) procedure
is proposed for LDC-OFDM, permitting channel coefficients
to change per OFDM block instead of per T OFDM blocks.
This enables LDC decoding to be independent of the spe-
cific equalizers used, and in turn, enables wide applicability
for enhancing different standards. One possible zero-forcing
method to estimate the data symbol vector in (4) is via
the Moore-Penrose pseudo-inverse of LDC encoding matrix
GLDC , which is calculated and stored offline.

To remove dependence of LDC decoding on symbol esti-
mation, LDC designs need to meet the following:
Correlation criterion: Denote the correlation matrix of
vec

(
[SLDC ]T

)
as Rvec([SLDC ]T ). For the case that LD-

coded symbols per channel use or per row of SLDC are block-
wise estimated, SLDC needs to be row-wise uncorrelated. In
other words, Rvec([SLDC ]T ) needs to have the block diagonal
form

Rvec([SLDC ]T ) =

⎡⎢⎣ RSLDC(1,.) · · · 0
...

. . .
...

0 · · · RSLDC(T,.)

⎤⎥⎦ (7)
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where RSLDC(k,.) ∈ CM×M , k = 1..., T is the correlation
matrix of the k-th row vector of SLDC , and 0s are M × M
zero matrices. For the case that LD-coded symbols are es-
timated per element of SLDC , SLDC needs to be element-
wise uncorrelated. In other words, Rvec([SLDC ]T ), needs to
be diagonal, and more restrictive constraints are applied. The
two steps are:

1) Signal estimation per channel use:
Signals in each of T channel uses are estimated. No
immediate signal detection is performed. (In different
channel uses, channel matrices may be different);

2) Data symbol estimation and detection per LDC block:
The data symbols corresponding to one LDC codeword
are estimated. (In this step, channel knowledge is not
required). Bit detection is then performed.

Unlike other estimation methods, the same core matrix-
vector TSE processing may operate on different signal di-
mensions with different sized symbol blocks. The per-data-
symbol complexity of encoding and decoding is constant and
proportional to the LDC data symbol coding rate.

C. TSE based LDC-OFDM system

1) Wideband OFDM model: During transmission, for the
k-th block of NC IFFT transformed complex symbols, a block
of P symbols (an OFDM block including guard interval) un-
dergoes order L frequency selective, temporally flat Rayleigh

fading with channel coefficients h(k) =
[
h

(k)
0 , ..., h

(k)
L

]T
.

Choosing P ≥ NC +L, the inter-block interference due to the
previously transmitted block is eliminated by a guard interval
of size (P − NC).

Denote s
(k)
OFDM(p), p = 1..., NC as the LD-coded symbol

transmitted on the p-th subcarrier during the k-th OFDM
block. The receiver experiences additive complex Gaussian
noise. Before transmission, a guard interval (e.g., cyclic prefix
(CP)) is added to each OFDM block. After FFT processing,
the received symbol is

x(k)
p =

√
ρH(k)

p s
(k)
OFDM(p) + v(k)

p , p = 1, ..., Nc (8)

where H
(k)
p is the p-th subcarrier channel gain during the k-th

OFDM block, and

H
(k)
p =

L∑
l=o

h
(k)
l e−j(2π/Nc)l(p−1), or H

(k)
p = [wp]

T h(k),

where wp =
[
1, ωp−1, ω2(p−1), · · · , ωL(p−1)

]T
and ω =

e−j(2π/Nc). The additive noise is circularly symmetric, zero-
mean, complex Gaussian with variance N0. It is assumed that
the additive noise is statistically independent for different k,
and ρ is the normalized signal to noise ratio (SNR).

The CP-OFDM system may also be written in block matrix
form,

x(k) =
√

ρD(k)
H s(k)

OFDM + v(k) (9)

where x(k) and v(k) are the frequency domain received signal
and noise vectors, respectively, D(k)

H = FNCH(k) [FNC ]H =
diag(H(k)

1 , ..., H
(k)
NC

), where
[
H(k)

]
m,n

= h
(k)
((m−n) mod NC

.
When zero-padding (ZP) is used as the OFDM guard

interval, orthogonality is destroyed, and the system model does
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Fig. 2. Proposed TSE based LDC-OFDM system. The dashed lines contain
the enhancement over a conventional OFDM system.

not have the simple form shown in (8). However, the ZP-
OFDM system model can be expressed in block matrix form
in the time domain,

x(k)
ZP OFDM =√
ρH(k)

0 [FNC ]H s(k)
OFDM + v(k)

ZP OFDM

, (10)

with the k-th received ZP-OFDM block x(k)
ZP OFDM ∈ CP×1,

and the frequency selective channel matrix H(k)
0 ∈ CP×NC

corresponding to the k-th OFDM block. The Toeplitz channel
matrix H(k)

0 is guaranteed to be invertible, regardless of the
channel zero locations [9]. Zero-mean white additive complex
Gaussian noise vector is represented by v(k)

ZP OFDM .
2) TSE based LDC-OFDM system: The proposed TSE

LDC decoding procedure in Section IV-B is applied to the
wideband OFDM channel described above. The differences
between conventional OFDM and the proposed TSE based
LDC-OFDM are indicated by the dashed lines in Figure 2.
Note that the block size used in the proposed system differs
from that of the conventional OFDM system.

3) LDC-OFDM receiver: The receiver for LDC-OFDM,
illustrated in Figure 3, first estimates the signals in T OFDM
blocks. Second, the estimated SLDC−OFDM−block is reorga-
nized into D LDC blocks. The D LDC demodulators operate
in parallel, followed by data bit detection. Denote the LDC
encoding matrix of the i-th LDC matrix codeword S(i)

LDC ∈
CT×NF (i) as G(i)

LDC , which encodes source data symbol

vector with zero mean, unit variance, s(i) =
[
s
(i)
1 , ..., s

(i)
Qi

]
,

and Qi is the number of source data symbols in s(i). If
G(i)

LDC = GLDC , i = 1, ..., D are unitary matrices, the
correlation matrices of s(k)

OFDM , k = 1, ..., T are identity
matrices. Note that in general, unitariness is not a necessary
condition for G(i)

LDC .
Due to the independence of the two estimation steps,

TSE LDC-OFDM systems possess a three-layered structure
consisting of data, LDC, and OFDM layers, which provides
flexibility and error protection for system design.

a) First estimation step - OFDM Demodulation: In the
proposed TSE based LDC decoding strategy, LDC decoding
is independent of OFDM signal estimation. Thus the proposed
TSE based LDC-OFDM system is backwards-compatible with
conventional OFDM systems.

In Section VI, minimum-mean-squared-error (MMSE)
equalizers are chosen to investigate error performance. As-
suming that OFDM symbols are normalized with unit variance
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and using (9) and (10), the respective equalizers are given by
[9]

• case of CP-OFDM

G(k)
OFDM CP MMSE =

√
ρC

s
(k)
OF DM

(
D(k)

H

)H
·(

INC + ρD(k)
H C

s
(k)
OF DM

(
D(k)

H

)H
)−1 (11)

and

̂s(k)
OFDM = G(k)

OFDM CP MMSEx(k), (12)

• case of ZP-OFDM

G(k)
OFDM ZP MMSE =

√
ρFNCC

s
(k)
OF DM

(
H(k)

0

)H
·(

IP + ρH(k)
0 [FNC ]H C

s
(k)
OF DM

FNC

(
H(k)

0

)H
)−1 (13)

and

̂s(k)
OFDM = G(k)

OFDM ZP MMSEx(k)
ZP OFDM , (14)

where k = 1, ..., T , C
s
(k)
OF DM

is the covariance matrix of the
k-th OFDM block symbols, C

s
(k)
OF DM

can be derived using

G(i)
LDC , i = 1, ..., D.
It is easy to show that if G(i)

LDC , i = 1, ..., D is unitary, (13)
requires more computation than (11) when matrix dimensions
are high, since D(k)

H is diagonal. Due to the layering in
TSE based LDC-OFDM, complexity of ZP-OFDM may be
reduced. An approximate solution can be obtained via [9]: De-
note FZP =

[
FNC 0(P−NC)×NC

]H
, U = [FP FZP ]† ,

and D
H

(k)
P

= FP C
(h(k))
P [FP ]H , where C

(h(k))
P is a P×P cir-

culant matrix, and C
(h(k))
P = Circ(h(k)

0 , 0, ..., h
(k)
L , ..., h

(k)
1 ).

Then the low complexity MMSE ZP-OFDM equalizer corre-
sponding to (13) is given as

G(k)
OFDM ZP FAST MMSE =

U
[
D

H
(k)
P

]H [
P

NC
IP + ρD

H
(k)
P

[
D

H
(k)
P

]H]−1. (15)

Note that since U may be pre-computed and D
H

(k)
P

is diago-
nal, matrix inversion is simplified.

b) Second estimation step - LDC-OFDM Block Demodu-
lation: Reorganizing the estimation results of the first estima-

tion step into D estimated LDC matrix codewords,
̂S(i)

LDC , i =
1, ..., D, the estimated data symbol vectors corresponding to
D LDC blocks are

ŝ(i) =
[
G(i)

LDC

]†
vec

(
̂S(i)

LDC

)
. (16)

D. Practical Issues

Since LDC encoding involves a complex transformation
(containing both phase and amplitude rotation), LDC-OFDM
systems may be more sensitive to channel estimation errors
than conventional OFDM systems. The performance of LDC-
OFDM under channel estimation error is discussed in Section
VI-C2. Also, low peak-to-average power ratio (PAPR) is
critical to OFDM systems. In [10], it is shown that LDC-
OFDM and OFDM systems have similar PAPRs and LDC-
OFDM systems may decrease BER without increasing PAPR.
We remark that the unitary property of the chosen GLDC is
a possible explanation [10]. A promising method to reduce
the PAPR in LDC-OFDM is to apply clustering in OFDM as
suggested in [6], [11].

V. DIVERSITY ANALYSIS OF LDC-OFDM

The following diversity analysis procedure is adapted from a
spectral decomposition approach originally applied to single-
input single-output (SISO) communications systems with a
linear model. The application of the resulting rank and prod-
uct criteria is not new. For example, diversity analysis of
frequency flat fading channels appears in [12], [13] and a
diversity analysis of time selective fading channels appears in
[14]. This method is adapted to analyze the diversity properties
of joint time-varying frequency selective channels. As will be
shown, the analysis leads to a general design criterion for full
joint frequency and time diversity, and is applied to high-rate
full diversity designs in such channels.

The orthogonality property of CP-OFDM makes the anal-
ysis of LDC-OFDM tractable. In the following, LDC-CP-
OFDM is therefore assumed. Without loss of generality, we
consider a single time-frequency (TF) block, i.e., we consider
a single T ×NF (i) block C(i), i = 1, ..., D in a LDC-OFDM
codeword. The block C(i) is created after encoding all the
i-th LDC codewords within a LDC-OFDM codeword. Denote
subcarrier indices chosen for TF block C(i), i = 1, ..., D
as {p(k)

nF (i) , nF (i) = 1, ..., NF (i), i = 1, ..., D, k = 1, ..., T}.
Denote the block components

C(i) =

⎡⎢⎢⎢⎢⎢⎢⎣
c
(1)
p1(i)

c
(1)
p2(i)

· · · c
(1)
p

NF (i)

c
(2)
p1(i)

c
(2)
p2(i)

· · · c
(2)
p

NF (i)

...
...

. . .
...

c
(T )
p1(i)

c
(T )
p2(i)

· · · c
(T )
p

NF (i)

⎤⎥⎥⎥⎥⎥⎥⎦ .

The transmission of a generic LDC block C(i) is expressed
as

r(i) =
√

ρM(i)H(i) + v(i), (17)
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where received signal vector r(i) and noise vector v(i) are of
size NF (i)T × 1, the i-th LDC symbol matrix

M(i) = diag(c(1)
p1(i)

, ..., c
(1)
p

NF (i)
, ..., c

(T )
p1(i)

, ..., c
(T )
p

NF (i)
), (18)

is of size NF (i)T × NF (i)T , c
(k)
pnF (i)

is the channel symbol
of the k-th OFDM block, pnF (i) -th subcarrier, and i-th LDC
codeword, nF (i) = 1, ..., NF (i), and i = 1, ..., D. The channel

H(i) =

[
H

(1)
p1(i) , H

(1)
p2(i) , ..., H

(1)
pNF (i)

,

..., H
(T )
p1(i) , H

(T )
p2(i) , ..., H

(T )
pNF (i)

]T

(19)

is of size NF (i)T × 1, where

H(k)
pnF (i)

=
[
wpnF (i)

]T
h(k), (20)

is the path gain of the k-th OFDM block and pnF (i) -th
subcarrier for block C(i). The quantities wp and h(k) have
been defined in Section IV-C1.

Consider a pair of matrices M(i) and M̃(i) corresponding
to two different time-frequency (TF) blocks C(i) and C̃(i).
Then the upper bound pairwise error probability (PEP) [15]
between M(i) and M̃(i) is

P
(
M(i) → M̃(i)

)
≤

(
2r − 1

r

) (
r∏

a=1
γa

)−1

(ρ)−r (21)

where r is the rank of

Λ(i) �
=

(
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
,

and RH(i) = E
{
H(i)

[
H(i)

]H}
is the correlation matrix of

vector H(i), γa, a = 1, ..., r are the non-zero eigenvalues of
Λ(i).

Then the corresponding rank and product criteria are

1) Rank criterion: the minimum rank of Λ(i) over all pairs
of different matrices M(i) and M̃(i) and should be as
large as possible.

2) Product criterion: the minimum value of the product
r∏

a=1
γa over all pairs of different M(i) and M̃(i) should

be maximized.

Basically, the key term Λ(i) in the spectral decomposition
consists of two terms: the difference of channel symbol
matrices and the channel correlation matrix. The system
performance, in terms of PEP, is impacted by the interaction
of both terms. This implies that the optimal diversity system
design is determined by this interaction.

Next, we derive the matrix form of RH(i) . Denote

W(i) =
[
wp1(i) , · · · ,wpNF (i)

]T
(22)

and

h =
[[

h(1)
]T

, · · · ,
[
h(T )

]T ]
. (23)

From (19),

H(i) =
(
IT ⊗ W(i)

)
h. (24)

Substituting into the correlation matrix,

RH(i) = E
{(

IT ⊗ W(i)
)
h

[(
IT ⊗ W(i)

)
h
]H}

=
[
IT ⊗ W(i)

]
E

{
h [h]H

}[
IT ⊗ [

W(i)
]H]

=
[
IT ⊗ W(i)

]
Φ

[
IT ⊗ [

W(i)
]H] , (25)

where Φ = E
{
h [h]H

}
.

Using the well-known property,

rank (AB) ≤ min {rank (A) , rank (B)} , (26)

rank
(
Λ(i)

) ≤
min

{
rank

(
M(i) − M̃(i)

)
, rank (RH(i))

}
.

(27)

To maximize the right-hand side of (27), it is clear that the
maximum of rank of Φ in the second term is T (L + 1). To
maximize the rank of RH(i) , we need to maximize the rank
of matrix W(i) of size NF (i) × (L + 1) . Thus, we need to

choose NF (i) ≥ L + 1. When p
(i)
nF = p

(i)
1 + b(nF − 1), nF =

1, ..., NF (i), NF (i) ≥ L + 1, where p
(i)
nF ≤ NC and b is a

positive integer, W(i) could achieve maximum rank L + 1.
Then RH(i) has the potential to achieve the maximum rank
of T (L + 1), only if rank(Φ) = T (L + 1). That is to say,
channels need to be full rank jointly in frequency and time
domains. For a description on how to choose interval b, see [6]
and [16].

Since M(i) − M̃(i) is of size NF (i)T × NF (i)T ,

rank
(
M(i) − M̃(i)

)
≤ NF (i)T, (28)

and NF (i) ≥ L+1. Note that M(i)−M̃(i) is a diagonal matrix.
Thus, the sufficient and necessary condition for maximizing
the rank of M(i) − M̃(i) is that all the diagonal elements are
non-zero, which is summarized as

Theorem 1: 1) If the correlation matrix RH(i) of chan-
nel vector H(i) is full rank T (L + 1), the necessary
condition that the frequency-time (FT) block C(i) of
LDC-OFDM achieves full joint frequency-time diver-
sity order, i.e. rank(Λ(i)) = T (L + 1), is that the
frequency dimension size of the FT block C(i) satisfies
NF (i) ≥ L + 1.

2) The sufficient condition that the frequency-time (FT)
block C(i) of LDC-OFDM achieves available joint
frequency-time diversity order, rank(RH(i)), is that any

two elements c
(k)
pnF (i)

and
˜

c
(k)
pnF(i)

, of any two different

blocks, C(i) and C̃(i) are different. Mathematically, the
sufficient condition is

c(k)
pnF (i)

− ˜

c
(k)
pnF (i)

�= 0, (29)

where nF (i) = 1, ..., NF (i), k = 1, ..., T ;
3) If both NF (i) = L + 1 and rank(RH(i)) = T (L +

1) are satisfied, the condition (29) is the sufficient and
necessary condition that the frequency-time (FT) block
C(i) of LDC-OFDM achieves joint full frequency-time
diversity order, rank(Λ(i)) = T (L + 1);
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4) The related product criterion of design is that the mini-
mum of products

T∏
k=1

NF (i)∏
a=1

∣∣∣∣c(k)
p

a(i)
− ˜

c
(k)
p

a(i)

∣∣∣∣2
taken over distinct FT blocks C(i) and C̃(i) must be
maximized.

A proof is provided in the Appendix A.
The result of Theorem 1 is somewhat surprising in that

the design criterion is different from that for space-time rapid
fading channels [17]. If c

(k)
pnF (i)

, nF (i) = 1, ..., NF (i) were
space-time coded signals, and nF (i) were to refer to the
indices of transmit antennas, then the design criterion (distance
criterion) would be

c(k)
p1(i)

c(k)
p2(i)

...c(k)
pNF (i)

�= ˜

c
(k)
p1(i)

˜

c
(k)
p2(i)

...
˜

c
(k)
pNF (i)

.

Denote ∣∣∣ck
(i) − c̃k

(i)

∣∣∣2 =
NF (i)∑
a=1

[
c(k)
p

a(i)
− ˜

c
(k)
p

a(i)

]2

and the corresponding product criterion for the space-time
codes would be that the minimum of products

T∏
k=1

∣∣∣ck
(i) − c̃k

(i)

∣∣∣2
taken over distinct codewords C(i) and C̃(i) be maximized.

Clearly there are differences between design criteria of
frequency-time and space-time codes for 2-D rapid fading
channels, since in the space-time case, the received signals
at each antenna are superpositions of signals from multiple
transmit antennas. However, there is no such superposition
of parallel signals at the receiver in frequency-time. The
differences in design criteria can lead to different matrix
codeword designs, implying that the best design in space-time
is not necessarily the best design in frequency-time, especially
in channels undergoing rapid fading. In particular, the above
analysis reveals that instead of a block using all available
subcarriers, a more efficient frequency-time (FT) block design
would utilize a much smaller block to achieve diversity order
up to T (L + 1). By achieving this increased diversity order,
a Rayleigh fading frequency selective channel may approach
the diversity order of a Gaussian channel [18].

The necessary condition that a FT block design achieves
a certain diversity order is that the rank of the channel
correlation matrix be equal to the diversity order of the FT
block. The diversity order actually achieved is based on the
chosen LDC design. Originally, Hassibi and Hochwald did
not consider diversity order as a design criterion [7]. In [8],
Heath and Paulraj consider both capacity and error probability
as criteria, but channel coefficients are assumed constant
over time within an entire LDC codeword. The analysis in
this section, however, considers correlation across parallel
frequency channels (OFDM subcarriers) as well as across time
channel uses (OFDM blocks).

An important special case of FT-block design is T = 1,
with upper bound diversity order L +1, known as linear con-
stellation precoding OFDM, or LCP-OFDM [6]. The diversity

order of LCP-OFDM is therefore always no larger that of full
frequency-time diversity LDC-OFDM (of order T (L+1) with
T > 1) in dynamic frequency-selective fading channels.

A rate-one LDC-OFDM design that achieves full joint
frequency-time (FT) diversity under arbitrary frequency-time
correlation can be obtained by considering time varying block
frequency selective channels of full rank RH(i) , and a LDC-
CP-OFDM system with T OFDM blocks and NC subcarriers
per OFDM block. Full-diversity frequency-time (FT) sub-
blocks C(i) of frequency dimension NF and time dimension
T , i = 1, ..., D, are constructed from a vector of Q = NF T
source symbols with rectangular QAM (or PAM, BPSK,
QPSK) constellations, where NF � L + 1. The vector is
encoded via linear constellation precoding [6], [19] whereby
a Q × Q LDC encoding matrix

GLDC = Θ =

⎡⎢⎢⎢⎣
1 α1 · · · αQ−1

1

1 α2 · · · αQ−1
1

...
...

. . .
...

1 αQ · · · αQ−1
Q

⎤⎥⎥⎥⎦
where αq , q = 1, ..., Q, are defined in [6], [19]. The above
FT-LDC design achieves full joint frequency-time diversity
with maximal achievable diversity order T (L + 1). The di-
versity order can be established by using results found in
[6], [19], showing that

[
vec

(
C(i) − C̃(i)

)]
q,1

�= 0 where

q = 1, ..., TNF . It is clear that
[
vec

(
C(i) − C̃(i)

)]
=[

Θ
(
s(i) − s̃(i)

)]
. Note that a rotation matrix of full signal

space diversity, Θ, enables
[
Θ

(
s(i) − s̃(i)

)]
q,1

�= 0 for any

s(i) �= s̃(i) [6], [19], where s(i) and s̃(i) denote a pair of
source symbol vectors of rectangular QAM (or PAM, or
BPSK, or QPSK). The above design is denoted as LCP-LDC.
As discussed in Section V, the best frequency-time diversity
code design may not necessarily correspond to the best space-
time diversity code design. Thus it is possible that LCP-LDC
has performance inferior to other powerful space-time code
designs for multiple antenna systems.

VI. SYSTEM PERFORMANCE COMPARISON

A. Simulation setup

Perfect channel state information (CSI), including amplitude
and phase, is assumed at the receiver but not at the transmitter.
In all simulations, the LCP-LDC design of size NF × T is
chosen and the corresponding LDC encoding matrices GLDC ,
defined in (5) are unitary. This code therefore meets the
correlation criterion of Section IV-B. The D LDC demodu-
lators each decode T × NF (i) LDC matrices. In particular,
we set NF (i) = NF = T, i = 1, ..., D. NC = 16 OFDM
subcarriers are chosen. An evenly and maximally spaced
subcarrier mapping with respect to the subcarrier indices
is used within LDC codewords. Data symbols use 4-QAM
modulation. The frequency-selective Rayleigh fading channel
has 4 paths with uniform power delay profile. The channel
is assumed to be constant over an integer number of OFDM
blocks, and independent and identically-distributed between
blocks. We denote this interval of blocks as the channel change
interval (CCI).
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Fig. 4. BER Performance of LDC-CP-OFDM vs. LCP-CP-OFDM with
MLD, NC = 16, NF = 4, T = 4, L = 3.

B. Comparison of LDC-CP-OFDM and LCP-CP-OFDM us-
ing maximum likelihood decoding (MLD)

Linear constellation precoded CP-OFDM (LCP-CP-OFDM)
with subcarrier grouping has been proposed as a non-
redundancy approach to improve BER performance [6]. Al-
though LCP-CP-OFDM achieves both maximum frequency
selective diversity gain and coding gain, it cannot exploit
time diversity over OFDM blocks. Using MLD, we investigate
the performance limitations of LDC-CP-OFDM. For a fair
comparison, all parameters of LCP-CP-OFDM are chosen the
same as those of LDC-CP-OFDM. Thus the available diversity
in the channels is the same for both systems. In Figure 4,
we observe that LDC-CP-OFDM, which achieves full joint
frequency and time diversity, significantly outperforms LCP-
CP-OFDM under frequency-domain MLD in rapid fading
channels (CCI = 1).

C. Comparison of Two-Step-Estimation (TSE) OFDM Systems
LDC-OFDM

1) Comparison of TSE based LDC-OFDM, LCP-OFDM,
and OFDM under different channel dynamics: To the best
of the authors’ knowledge, the combination of LCP and ZP-
OFDM has not been proposed and investigated previously,
while LCP-CP-OFDM has been studied in [6]. Figures 5 and
6 compare the performances of LDC-OFDM, LCP-OFDM,
OFDM with cyclic-prefix and zero-padding, respectively, un-
der different CCIs. Note that different CCIs represent different
degrees of temporal channel correlation. We note that the
performance curves of LDC-OFDM under CCI = 4 and
LCP-OFDM under CCI = 1 overlap, which demonstrates
that LDC-OFDM achieves full frequency diversity gain even
without time diversity in the channel.

As discussed in Section V, the diversity order of LDC-
OFDM is achievable only if the channel provides correspond-
ing diversity. This agrees with the simulation results of LDC-
CP-OFDM, where performance is improved by faster channel
dynamics, and, as expected, is especially notable in high SNR
regions. Also, LDC-OFDM outperforms LCP-OFDM under
CCI = 1, i.e., when channels have less temporal correlation
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Fig. 5. BER Performance of CP based Systems under different channel
dynamics, NC = 16, NF = 4, T = 4, L = 3.
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Fig. 6. BER Performance of ZP based Systems under different channel
dynamics,NC = 16, NF = 4, T = 4, L = 3.

over time, which corroborates with the analysis in Section V.
Overall, LDC-OFDM systems exhibit noticeable advantages
over LCP-OFDM systems in channel environments that vary
over OFDM blocks.

2) Effect of LDC-CP-OFDM under estimated CSI: To
consider the more realistic scenario of imperfect channel
state information (CSI) at the receiver, Figure 7 quantifies
the performance degradation of LDC-CP-OFDM performance
under estimated CSI obtained through standard pilot-based
MMSE channel estimation [20]. The pilot sequence is chosen
randomly from a sequence of 4-QAM symbols. Linear MMSE
estimation is used to determine the gains in the frequency
domain. The results show that both full-rate LDC-CP-OFDM
and CP-OFDM degrade under estimated CSI: at a BER of
10−2, the degradation is 0.63dB and 0.35dB, respectively.
As expected, LDC-CP-OFDM is more sensitive to channel
estimation errors. However, LDC-CP-OFDM still outperforms
CP-OFDM under frequency domain MMSE channel estima-
tion, due to its large compensating diversity gain.

3) Performance of LDC-ZP-OFDM using low complex-
ity MMSE receivers: In Figure 8, TSE LDC-ZP-OFDM
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Fig. 7. Effects of LDC-CP-OFDM under estimated channel information,
NC = 16, NF = 4, T = 4, L = 3.
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Fig. 8. BER Performance of LDC-ZP-OFDM (TSE) under MMSE vs. low
complexity MMSE receivers, NC = 16, NF = 4, T = 4, L = 3.

performance is compared using both conventional and low
complexity (approximate) MMSE equalization described in
Section IV-C3, Eq. (15). From Figure 8, it can be seen that in
the low to medium SNR range, the performances of LDC-ZP-
OFDM under MMSE vs. low complexity MMSE equalizers
are reasonably close. At a BER of 10−3, performance degrades
by 1.2 dB. We remark that according to our experience, the
amount of performance degradation may vary by employing
different LDC encoding matrices. At increasing SNR, the
performance loss using a low complexity approach becomes
more significant:, increasing to 1.8 dB at a BER of 10−4. The
above comparisons illustrate the performance and complexity
tradeoffs of the layered TSE structure.

D. Comparison of OSE and TSE LDC-OFDM

As discussed in Sections IV-A and IV-B, OSE has higher
complexity than TSE, requiring one large system of linear
equations for the whole LDC-OFDM block operating on
NCT subcarriers and D = NC/NF LDC codewords. Due to
space limitations, we omit a detailed description of the OSE
LDC-OFDM transceiver system. For linear MMSE estimation,
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LDC−CP−OFDM (TSE), CCI = 1 OFDM Block

LDC−CP−OFDM (TSE), CCI = 1 OFDM Block

Fig. 9. BER Performance of LDC-OFDM (OSE) vs. LDC-OFDM (TSE),
NC = 16, NF = 4, T = 4, L = 3.

OSE involves matrix inversion of O
(
(NCT )3

)
, while TSE

involves matrix inversion of O
(
T (NC)3

)
as well as D

matrix-vector multiplications of O
(
(NF T )2

)
, for both CP and

ZP cases.
From Fig. 9, it can be seen that the performances of OSE

and TSE for both LDC-ZP-OFDM and LDC-CP-OFDM are
similar. We reiterate that the chosen LDC encoding matrices
G(i)

LDC , i = 1, ..., D are unitary, which result in uncorrelated
LDC-coded symbols. In the unitary case, however, TSE two
estimation stages are decoupled. Thus, with the proper choice
of LDC coding matrices, TSE performance may approach that
of OSE at much lower complexity. While attractive, not all
LDC-OFDM designs can effectively use a TSE procedure.
In general, where LDC encoders produce correlated coded
symbols, a TSE procedure leads to performance loss.

VII. CONCLUSION

Inspired by a space-time processing technique, LDC have
been applied to improve OFDM performance. These LD codes
can be advantageously combined with OFDM transmission to
enable simple decoding of large LDC matrices. To this end,
a novel two-step estimation (TSE) LDC decoding strategy
is proposed for a special subclass of LDC matrices with
the constraint in Eq. (2), which can decouple CSI and LDC
decoding. With high spectral efficiency at a cost of increased
decoding delay, the proposed LDC-OFDM system can achieve
superior BER performance by exploiting available frequency
and time diversity in dynamic frequency selective channels.
Insight into LDC performance is obtained by deriving the
upper bound time and frequency diversity order that LDC-
OFDM can achieve. This paper also provides a criterion
and example design of a full diversity time-frequency LDC-
OFDM. At lower complexity, the TSE LDC-OFDM system
has performance that in certain cases, may be close to that of
OSE LDC-OFDM. Simulations reveal that performance losses
under imperfect CSI as well as with low complexity receivers
can be modest.
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APPENDIX

Part 1) of Theorem 1 has been discussed in previous parts
of this section. Since part 4) is a straightforward result of 2) or
3), only 2) and 3) are shown. Note that

(
M(i) − M̃(i)

)
is of

size TNF (i) × TNF (i). Therefore the condition (29) ensures

rank
([(

M(i) − M̃(i)
)])

= TNF (i).

Accordingly,

rank(Λ(i))

= rank

((
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
)

= rank

(
RH(i)

(
M(i) − M̃(i)

)H
)

= rank (RH(i))

proving statement 2). If both NF (i) = L + 1 and
rank(RH(i)) = T (L + 1) hold, to achieve rank(Λ(i)) =
T (L + 1), it is necessary to have

T (L + 1)

= rank

((
M(i) − M̃(i)

)
RH(i)

(
M(i) − M̃(i)

)H
)

≤ rank
((

M(i) − M̃(i)
))

However,
(
M(i) − M̃(i)

)
is of size T (L + 1) × T (L + 1)

in this case. Hence, (29) is a necessary condition. Conversely,
using 2) of Theorem 1, rank(Λ(i)) = rank (RH(i)) = T (L+
1), proving 3).
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