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Abstract—This paper proposes a hybrid user group selection
method in multi-user multi-input multi-output (MU-MIMO) sys-
tems for downlink transmission. The proposed scheme provides
additional trade offs between performance and complexity. In this
method, initial groups of users are first randomly selected from
a pool until a performance threshold of a simplified metric is
satisfied. The proposed metric computes the minimum geometric
angle among users’ subspaces. Then, the user group is enlarged
by maximizing sum rate among the users in greedy fashion based
on ta subspace angle proposed performance metric. Monte Carlo
simulation results compare the performance of the proposed
method with existing techniques as a function of the initially
chosen group size and selection pool size and reveals potential
for lowered complexity and/or improved performance.

Index Terms—Multi-user MIMO, user selection, epsilon-
greedy, subspace angle

I. INTRODUCTION

To improve the sum-rate performance of multi-user multi-
input multi-output (MU-MIMO) systems, numerous precoding
algorithms have been employed including optimal strategies
such as dirty paper coding (DPC) [1]. However, since DPC
requires significant encoding and decoding complexity, espe-
cially when the number of users is large, implementation of
DPC is challenging. Instead, low-complexity precoding meth-
ods have been studied. To address complexity and maintain
high performance in MU-MIMO systems, block digitalization
(BD) precoding is a popular alternative due to its simpler
implementation [2]. The BD precoder is a multi-antenna
generalization of the zero-forcing strategy that cancels mutual
inter-user interference transmitted to users in the cell [2].

When the number of users in a cell is large, user selection
is essential for a base station (BS) to serve larger numbers
of users in downlink (DL) transmission. In principle, the best
selection strategy would be to search over all possible subsets
of users resulting in complexity that grows exponentially with
user group size. In view of this, greedy algorithms have been
proposed to solve this problem. In [3], users are iteratively
selected to achieve highest total throughput including the
previously selected users. Although this method may perform
well, implementation complexity is high due to frequent use of
the singular value decomposition (SVD). In [4], a greedy low-
complexity scheduling algorithm is proposed where the prod-
uct of squared row norms of effective channels is employed
as the selection metric. In [5], a low-complexity greedy user
selection algorithm is proposed based on the angle between
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subspaces of users. This method can reduce complexity in user
selection in which the product of eigenvalues can be obtained
iteratively and recursively using the relationship between prin-
cipal angles and eigenvalues. In [6], a user scheduling scheme
is proposed to maximize the sum rate by investigating user
channel characteristics in a subspace approach and designing
user-scheduling metrics from a geometric viewpoint. However,
its use of BD precoding also requires frequent use of SVD to
precode the data stream.

The methods presented above are based on greedy algo-
rithms that significantly reduce complexity over exhaustive
search. On the other hand, in reinforcement learning problems
such as the multi-arm bandit, random selection may yield
better results [7]. In reinforcement learning, if a greedy action
is selected, current knowledge of the values of the actions
is said to be exploited. Instead, if a non-greedy action is
selected, then exploration occurs, enabling improved reward
in an enlarged search space. In other words, exploitation is
the action that maximizes expected reward in a given step,
but exploration may enlarge the search space to produce a
greater total reward in the long run [7]. Inspired by both ex-
ploitation and exploration processes, an epsilon-greedy method
is proposed in order to randomly select users based on a
reinforcement learning formulation that is shown to improve
performance for cognitive radio applications [8].

The above discussion motivates the hybrid user selection
method proposed here: a random user selection process that
incorporates a priori problem knowledge is combined with
greedy user-incremental maximization of the sum rate in
downlink transmission of a MU-MIMO system. In general, an-
alytical determination of the CDF of the minimum geometric
angle among user subspaces by their multi-antenna receivers
is not tractable. A threshold of the empirical CDF obtained by
Monte Carlo simulation is therefore used instead. We select a
group of initial users among randomly chosen groups in the
user selection pool. This subspace angle criterion ensures that
users with relatively low mutual interference are chosen to
initialize greedy selection. Then, the group is enlarged from
users selected from the pool by a greedy algorithm based
on the minimum geometric angle among subspaces of user
channels. The process is summarized as follows:

o To initially select users, L, users are randomly from

the pool, where L, is less than the target group size
L, and represents a design parameter. If the pair-wise
minimum geometric angle among user subspace pairs
is below a threshold, the process terminates. Otherwise,



another group of L, users is selected until the threshold
requirement is met, typically stopping when the group
performance minimum angle pairwise metric is within the
top 10% of all groups of size L,. Details are described
by Algorithm 1.

o Then, the rest of the users, L. — L,., are incrementally
chosen from the pool, based on greedily maximizing sum
rate in which the minimum geometric angle among the
subspace of user effective channels is used as a metric.
Details are described by Algorithm 2.

o The choice of initial group size, L,, random selection
threshold as well as greedy selection, the combination of
Algorithm 1 and Algorithm 2, provide trade-offs between
performance and complexity.

In the sequel, we use the following notational conventions:
boldface upper case letters X denote matrices and lowercase
underlined letters x denote vectors. Capital letters in serif
font, e.g., A, denote a set of users. Superscripts (-)*, ()T,
and (-)f denote conjugate, transpose, and conjugate-transpose,
respectively. E{-} denotes expectation, Tr{-} denotes matrix
trace, (.)" denotes orthogonal complement and ||(.)||> denotes
the Euclidean norm of (.).

II. SYSTEM MODEL

A MU-MIMO system is considered where a single BS with
N antennas transmits data signals to L selected users from
the pool of K users in downlink (DL) transmission and each
user has M antennas. It is assumed that M < N and % is
an integer. Considering a subset of users, I', that has been
scheduled for DL transmission, we define H, € CMxN,
z, € CMx1 and y, € CMx1 a5 the narrowband, flat-fading
channel to the kth user, the vector of transmitted symbols and
the received signal at the kth user, respectively. Without loss of
generality, we assume that the elements of Hj, are independent
and identically distributed unit variance complex Gaussian
random variables and that each user obtains perfect knowledge
of the channel matrix. The channel matrix is quantized and fed
back by each user to the base station over error free, a zero
delay and limited feedback channel [9]. The received signal
at kth user can be therefore expressed as [10]
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where n, € CM*! denotes the circularly-symmetric complex
Gaussian noise vector with zero mean and covariance matrix
I,; and W, € CN*M denotes the linear precoder matrix at
the kth user, respectively; and rank(Hy) = min(N, M) = M.
It is worth mentioning that on the right hand side of Equation
(1), the first and second terms are the desired signal and inter-
user interference for kth user, respectively. We assume that
E{z, 21} = I,; and user power allocation is given by

I
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where 2, = (Wka ) and P denotes the average power
(SNR) constraint in DL transmission. We denote the average
power allocated to user k by py, i.c., pr, = Tr(Q).

The quantization codebook is fixed beforehand and em-
ployed by each user and known to the BS. This codebook
C consists of 28 matrices in CM*N ie., (V{,Va,..., Vy5),
where B is the number of feedback bits allocated per user [9].
Let I:Ik be the quantization of the channel matrix Hy, selected

from the codebook C by the following metric:

H, = arg min d?(Hy, V), 3)
ec

where, d(Hy, V) is chordal distance given by [11]

“4)

where 6;’s indicate the principal angles between the two
subspaces spanned by the columns of the matrices V and
H;, [11]. Since the principal angles are based only on the
subspaces spanned by the columns of the matrices, without
loss of generality, it is assumed that entries of the codebook C
are unitary matrices, i.e., VHEV =1,,VV € C. The chordal
distance given by Equation (4) can be also written as [9]

d*(Hg, V) = M — r(H, VVTHy), (5)

where Hj, denotes the orthogonal basis of the subspace of
channel Hy,.

A. Block diagonalization precoding

BD precoding is employed to null inter-user interference.
The precoding matrix for the jth user is designed such that

H,W;=0,Vk#j, k=12, (6)

In the BD precoder, W = B;II;, where B is designed to
null the inter-user interference and IT;, € CM*M is employed
for power allocation. Thus, Equation (6) is equivalent to
H, B; = 0 for all k£ # j. To determine By, for the kth
user, an approach based on SVD can be employed. Let us
define the aggregate channel matrix of all the other users than
the kth user as

H, = [H/H{ . . H HI . Hm] e CUPI=DM=N —(7)

In view of this definition, By, should lie in N (Hg). To find
this null space, we employ the SVD of Hj, given by

H), = Ukz

where V( ) forms a basis of A’ (Hy), the null space of Hy,
and V( ) consists of M right singular vectors of Hj that
span the orthogonal complement of A/ (Hk2 To nullify inter-
user interference, we can choose By 0 [5]. It is worth
mentioning that the columns of By are an orthonormal basis
of R(Hy), i.e., row(Hy) and we must have N > (|| —1)M
to employ BD and guarantee the existence of a null space of
(H},) with dimension greater than zero [5].
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The aforementioned BD precoder design requires per user
SVDs of a complex matrix of size (|JI'| —1)M x N. To reduce
complexity, we employ an iterative scheme that is instead
based on QR decomposition [4], which is described in Part 2 of
Algorithm 1. In view of space limitations, details are omitted.

Let L be the number of users that has been scheduled for
the DL transmission, i.e., L = |T'|. Thus, L < % in order to
employ the BD scheme. In view of this, selecting the best set
of L., users in each channel use to maximize the sum-rate
(SR) can be expressed as

T

SR = arg max Ry, 9
rc{1,2,.., K}];

where Ry, is the achievable rate for kth user expressed as [10]

Ry = E log, det (Iy + H, 10} ), (10)

where ﬁk = H;B;, and is the effective channel matrix for the
kth user and Y, = IT,ITZ.

Remark 1: The optimal set of users can, in principle,
be found by searching over all possible subsets of K users.
However, the complexity of exhaustive search grows as K.
Thus, we seek to find a suboptimal lower-complexity algorithm
that can achieve a significant fraction of the optimal full search
performance. We propose a user selection approach that is
inspired by an epsilon-greedy search strategy.

Remark 2 : Employing block diagonal precoding to can-
cel interference is only achieved when there is perfect CSI, i.e.,
exact knowledge of Hj, at the BS. In the case of imperfect CSI,
where there is limited feedback, i.e., the BS is aware of only
a quantized version of Hy, namely, H,. Precoding matrices
are therefore based on fIl, I:IQ, . I:IK instead of Hy, Ho, ...,
Hx while performing BD. Let us denote precoding matrices
that use imperfect CSI by Wl, Wg, . WL, where each
Wl is selected such that H;, Wl =0V l # 4. This implies
that H;W, # 0 leading to a loss in throughput from residual
interference terms. In view of this, Equation (1) becomes [9]

y,= e Wiz + Y H Wiz + o, (D)
T Tk v
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Residual interference

and the achievable rate for the quantized precoder in Equa-
tion (11) for the kth user in the selected group, 1 < k < L,
can be expressed as [9]

det (Ly+Y 7 Hy W, v H W)

RZ =Elog, . (12)
where Y, represents user power allocation, and the expectation
is carried out over the channel distribution as well as random
codebooks. In the special case of equal power allocation
considered here, Y, = =, where P, is the total power budget.

B. Subspace Angles

The angle between subspaces is applied in Section II-C in
order to define a pairwise e-orthogonality criterion among the

users. We employ the following definition, which is used in
the proposed user selection algorithm in Section III:
Definition 1 : Let W, C C" and V; C C™ be subspaces
with 71 = dim(Wy) < dim(V;) = re. Between subspaces
Wi = Wy and V; 1 = V;, the principal angles 0y ; ; € [0, 7]

for i =1, ..., are recursively defined by [12]
cos Oy ;= max fwk = Vfiwk,i,
Wi €EWh i Ve €V 55 Wi [l2=1, [V || 2=1 ’
1= 1, 1

(13)
where wy; and v;; are the vectors that construct the ith
principal angle 6y, ; ;. These vectors are given by ||wy ;|2
1, ||Vj77;||2 = 1, and kai = Wk,i—l ﬂwtifl, Vj7i
Vi1 ﬂvj:i_l. From (13), it can be seen that the cosine of
the principal angle is the inner product of two vectors, and the
minimum principal angle represents the largest inner product
of any vectors in the two subspaces.

Let Wo C C"™ and Vo <C C™ be orthonormal
bases of Wi = span{wy1,Wi2,...,Wgr, } and V; =
span{V; 1,Vj 2, ..., V;r, }, respectively. The angle between Wj,
and V;, ie., ¢ ; = LWy, V;) is given by [13]

cos® ¢y, j = H cos? O j i

=1

(14)

where 0, ; i, Wi and v ; are given in Definition 1. Let
n and m index users in the pool, where r,, = rank(H,) <
rank(H,,) = 7. The geometric angle between user m’s
channel, H,,,, and user n’s channel, H,,, can alternatively be
expressed as [6]

det(H, H'H,,H/])

15
det(H,H.) ()

cos? Pnym =
The value of cos? ¢, ,, represents the ratio between the
volume of the parallelepiped spanned by the projection of the
basis vectors of the lower dimension subspace on the higher
dimension subspace and the volume of the parallelepiped
spanned by the basis vectors of the lower dimension sub-
space. In (15), HnHﬁ can be interpreted as a type of inner
product between channel matrices. We use this to define an
e-orthogonality metric the next subsection.

C. Epsilon orthogonality

The concept of e-orthogonality for the case of single-
antenna users has been employed previously, e.g., [14] based
on spatial orthogonality among channel vectors. Motivated by
this, we define an e-orthogonality metric for a multi-antenna
group of users based on the (]2;) angles between channel
subspaces.

Definition 2 : Let G = {1,2,..., L} denote a group of L
users chosen from the K-user pool. For any group, G, let its

pairwise orthogonality metric
€r, = min ¢y ;.
L= fhec¥ri (16)

A value of e, = 0 represents maximum spatial orthogonality
among all subspaces Wy, and Vj, j, k, € G. Let the cumulative



distribution function (CDF) of €; over the distribution of
random channels be denoted by

F., () = P(e<ep). 17)

We set a threshold, F, (&), in Equation (17), which
determines a value of the metric, €;,, such that P(e < ep) >
F., (etp) to characterize the relative orthogonality of user
group subspaces. That is, a group is selected if its pairwise
orthogonality metric is within the top 1/F,, (es,) fraction of
all realizations over the random channel distribution. Shown in
Fig. 1 are the CDFs computed empirically for different group
sizes as analytical determination of (17) is difficult.

III. USER SELECTION

The combination of exploitation with exploration can im-
prove the performance of a greedy algorithm, and is formu-
lated in terms of reward maximization [7]. However, instead
of purely random exploration, a priori problem knowledge can
be employed to lower selection complexity and maintain high
performance. This criteria, Eq. (16), is based on minimizing
the maximum mutual interference among user pairs. This
interference can be interpreted as a correlation metric for the
corresponding channel matrix subspaces spanned by column
vectors. To quantify subspace correlation among the users,
the geometric angle between the subspaces is proposed [6].
In principle, selecting the best (highest sum rate) group of L
users would require exhaustive search over (IL( ) groups, which
requires O(K ") computation. Since this is computationally
prohibitive, we instead propose a random selection scheme that
considers only a subset of the groups. User groups are selected
until a threshold condition is achieved, based on geometric
subspace angles that indicate mutual user interference based
on the e-metric defined in Section II-C.

A. Complexity reduction

The proposed approach differs from existing approaches in
the literature that compute a unique sum rate for each group,
which require O(K') complicated sum rate computations.
In addition to avoiding exhaustive search, the proposed user
selection strategy altogether avoids sum rate computation and
instead uses a pair-wise selection criterion, whose computation
is dominated by a maximum of (I;) = K(K —1)/2 unique
subspace angles that can be reused for different randomly
selected user groups rather than the O(K') required for
group sum rate computation in full search. To further limit
computation, a best group random selection strategy is used
which, on average, reduces the number of groups searched
by the factor 1/F;, (e;,) from Eq. (17), which in the results
presented, equals a factor of 10.

B. Proposed user selection algorithm

In this section, we propose a hybrid user selection method
in which the random selection process based on a priori
knowledge presented in Section III-B1 is combined with a
greedy algorithm presented in Section III-B2 in order to
maximize the sum rate.

Empirical CDF

0.8

Probability
e
(2]

o
IS
T

0 05 1 15

€
Figure 1: Shown is the CDF of the minimum pairwise sub-
space angle, Eq. (17), for different group sizes, L.

1) Random selection process: In the initial random se-
lection process, we randomly select L, users from the pool
based on subspace angle. The proposed user selection method
is given by the randomized and greedy selection processes
summarized in Algorithm 1 and Algorithm 2, respectively.
First, in Algorithm 1, we randomly select groups L, users from
the pool {u1, us, ..., ux } as the initial users in the selected set
and we evaluate its performance based on geometric angle by
computing €7, using (16). If the performance metric meets
a given CDF threshold in Equation (17), we have found
the initial group and enlarge it using the greedy algorithm
described later. Otherwise, we select another group at random
and repeat. We note that €7, acts as a simplified metric that
serves as a proxy for sum rate, and is compared to a CDF
threshold to assess relative group performance. The lower the
value of €, the stricter the performance and the longer the
expected termination time of random group selection.

Then, to design BD precoder matrices for each selected user
from Part 1, we employ the iterative method in [4] based on
QR decomposition to lower complexity over SVD. In Part 2 of
Algorithm 1, the preceding matrix for kth user, By, forms an
orthonormal basis of A'(H},) given by (7). Since both columns
of By, and \7,(60) span N (Hy,), it is easy to verify equivalence
to the SVD-based method.

2) A criterion for maximizing sum rate: From (15), it can be
seen that when the subspace planes for users k and j are closer,
cos? ¢ ; is larger or equivalently ¢y ; is smaller and vice
versa. Thus, a simple user-selection metric is needed in order
to minimize subspace correlation and consequently minimize
interference from nonorthogonality among the selected users.
Although this metric measures orthogonality among users, it
may not maximize the sum rate among the selected users.
Thus, a criterion is employed to maximize the sum rate over
the pool of candidate users from the pool that may be added to
the group in sequential fashion. In view of this, the change in
sum rate (SR) capacity when a new user is added in a selected



Algorithm 1 User selection Based on Randomness

Algorithm 2 User selection Based on Greediness

. Part 1: Initial Group Selection

. Set K, L, L,, Cih-

cfor j=1to ( ) do

Randomly select L, users from pool.
Calculate its metric, €, (j), using Eq. (16).

if €z, (j) < e, then save user group j. Exit loop.
end for loop.

. Part 2: Determine precoder for L, user group
8: Set B(ll) = Iy, Design precoding matrix:
9: fori=1to L, —1do

AN A A AT

~

w0: B = BN (HB)

11: for j = 1 to 7 do update precoder
i+1 i i

12 B = BN (H;;1B")

end for loop.
end for loop.

user subset can be expressed as [15]

ASR = SRgain - SRl0557 (18)

where SRyqin and SRj,ss denote the gain and loss in sum
rate by adding a new user to the set, respectively. SRyqin is
approximated by [6]

SRygain = log, (det(HyH}!) sin® £ (Hs, ,Hy,)),

where A(H‘gn,Hk) denotes the geometric angle, as defined
by (14), between the range space of the channel matrix of
the kth user, Hy, and the aggregate channel matrix of already
selected users, Hs, . Following arguments in [6], for simplicity,
we ignore the effect of SR;,ss, and the greedy user selection
metric over a set of users, ¢, becomes

~ Hy 2
M =~ arg max det(H,H;') sin® £(Hs,,Hy)).

(19)

(20)

This metric is employed in our proposed user selection scheme
in Algorithm 2, where the reduced-complexity iterative scheme
given in Part 2 of Algorithm 1 is used to compute precoder
matrices for the selected user.

IV. SIMULATION RESULTS

In this section, we present the performance and complexity
of the proposed method based on 100 Monte Carlo trials each
under a set of different parameter choices and compare to those
in the MU-MIMO user selection literature [4] and [6]. In [4],
user selection is based on the Frobenius norm of the channel.
In [6], user selection is based on the angle between subspaces
of the channels based on block diagonalization precoding
performed in greedy fashion.

First we investigate the performance in terms of the average
sum rate. Fig. 2 shows average sum rate of a group of L =4
selected users from the pool of K = 20 users by the proposed
method (Algorithms 1 and 2), as computed using Eq. (12),
versus signal to noise ratio (SNR). Here, L, = 2,3, and 4
represent different initial group sizes and the channel is
quantized with 4 bits. It can be seen from Fig. 2 that when L,
increases the performance of the proposed method improves as

. Part 3: Adding remaining L — L, users to selected set
: Set @, = {uy,ug, ..., ux } — {Us1,Us2, s Us(r,) }>
o Set Qp, = {us1,us2, ..., ug(r,)} and set n = L.
Set Q = BY"") x N'(H., BY").
: while n < L do
Select user channel with maximum subspace angle
with Hs, = [HI'HY ... F}S ‘]H
u, = arg max det(HH, ) sin &(Hgny,Hk)
ked

9 Set B =Q

10: for each m € S,, do

1 Set G, = N'(H,,, B 1)

12: Update the precoders B( ) —
end for loop

e A A o e

=BG,

13: Update S;,+1 = S, Ju, and @, 11 = D, — uy,.
14: Update orthonormal basis for channel matrices
15: Q=R(Hs,,,)

16: n<—n41

end while loop

expected since there is more exploration. However, increasing
L, increases complexity due to more randomness in group
selection (exponential in L,) with associated calculations
of angles between subspaces. It can be also seen that the
performance of the proposed method outperforms the methods
presented in [4] and [6] at high SNR for each of the L,
values. Even at low SNRs, the proposed method noticeably
outperforms the methods presented in [4] and [6] for L, = 4.
At low SNRs, the proposed method outperforms the method
presented in [4] and has performance close to that of [6] for
L,=2and L, =3.

It can be seen from Fig. 2 that when thresholding given
by (16) is not used to select the group of L, = 4 users
with minimum subspace angles, the performance outperforms
thresholding at both low and high SNRs in terms of the average
sum rate, but requires search of all ({f ) initial groups, as shown
by the ‘Proposed method (full search, L, = 4)’ curve in the
legend of Fig. 2. For the CDF threshold ¢, used, the ex-
pected number of random group selections until encountering
a top F,, (en) x 100% group is equal to 1/F, (et). Here
F,, (etn) = 0.1 so only 10 randomly chosen groups on average
are required rather than the full search of ( ) groups, but at
a cost of some performance loss.

We next investigate the performance of the proposed method
on different pool sizes. Fig. 3 shows the average sum rate of
L = Lyg, = % = 4 selected users where the user pool
size varies from K = 5 to K = 20 and random selected user
group size from L, = 2 to L, = 4. It can be seen that when
L, = 2, the performance of the proposed method is close to
that provided in [6] and superior to that in [4] for all pool
sizes. When L, increases, the performance of the proposed
method significantly improves and outperforms the methods
in [4] and [6]. This indicates that by increasing the size of
the search space even if randomly sampled, performance sig-
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Figure 2: Average sum rate versus SNR for L, = 2,3,4, 4
bits quantization, N = 8 BS antennas, M/ = 2 antennas per
user and a pool size of K = 20 users.
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Figure 3: Average sum rate versus pool size, K, for SNR =
10dB, 4 bits quantization, N = 8 BS antennas and M = 2
antennas per user.

nificantly improves; however this improvement adds selection
complexity compared to the purely greedy methods.

It can be also seen in Fig. 3 that for all pool sizes, when
thresholding given by (16) is not used and the group of L4,
users is selected though exhaustive search, the performance
of the proposed scheme (with full search) significantly out-
performs thresholding methods. As pool size, K, increases,
the performance advantage of the proposed scheme becomes
more significant. Also, from Fig. 3, by increasing the pool size,
the gap between the proposed thresholding method and the
full search method is maintained, and performance improves
steadily. The proposed approach may therefore be potentially
applicable to dense networks and found in IoT applications
where the numbers of users served is very large.

V. CONCLUSION AND FUTURE WORK

An epsilon-greedy approach to user selection for a downlink
MU-MIMO system is proposed where a small group of initial
users are selected randomly based on a threshold criterion
determined by the CDF of the minimum geometric angle
between subspaces of the user channels. Then, the rest of the

users are selected based on the subspace angle in a greedy
algorithm. The novelty of this approach are the new trade
offs that are possible between sum rate performance and
implementation complexity.

While these results appear promising, future work will
focus on (i) investigating improved low complexity pairwise
performance metrics that take both power levels and mutual
interference into account, (ii) addressing optimization of the
initial random group size L, and selection threshold ey,
and (iii) performing a detailed quantitative investigation into
complexity and computation cost.
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